Skip to main content

Advertisement

Log in

Modeling the effect of sleep regulation on a neural mass model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In mammals, sleep is categorized by two main sleep stages, rapid eye movement (REM) and non-REM (NREM) sleep that are known to fulfill different functional roles, the most notable being the consolidation of memory. While REM sleep is characterized by brain activity similar to wakefulness, the EEG activity changes drastically with the emergence of K-complexes, sleep spindles and slow oscillations during NREM sleep. These changes are regulated by circadian and ultradian rhythms, which emerge from an intricate interplay between multiple neuronal populations in the brainstem, forebrain and hypothalamus and the resulting varying levels of neuromodulators. Recently, there has been progress in the understanding of those rhythms both from a physiological as well as theoretical perspective. However, how these neuromodulators affect the generation of the different EEG patterns and their temporal dynamics is poorly understood. Here, we build upon previous work on a neural mass model of the sleeping cortex and investigate the effect of those neuromodulators on the dynamics of the cortex and the corresponding transition between wakefulness and the different sleep stages. We show that our simplified model is sufficient to generate the essential features of human EEG over a full day. This approach builds a bridge between sleep regulatory networks and EEG generating neural mass models and provides a valuable tool for model validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atay, F.M., & Hutt, A. (2006). Neural fields with distributed transmission speeds and long range feedback delays. SIAM Journal on Applied Dynamical Systems, 5(4), 670–698. doi:10.1137/050629367.

    Article  Google Scholar 

  • Barkai, E., & Hasselmo, M.E. (1994). Modulation of the input/output function of rat piriform cortex pyramidal cells. Journal of Neurophysiology, 72(2), 644–658.

    CAS  PubMed  Google Scholar 

  • Benita, J.M., Guillamon, A., Deco, G., & Sanchez-Vives, M.V. (2012). Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Frontiers in computational neuroscience, 6 (64). doi:10.3389/fncom.2012.00064.

  • Benoıt, E., Callot, J.L., Diener, F., & Diener, M. (1981). Chasse au canard. Collectanea Mathematica, 31-32(1-3), 37–119.

    Google Scholar 

  • Booth, V., & Diniz Behn, C.G. (2014). Physiologically-based modeling of sleep-wake regulatory networks. Mathematical Biosciences, 250(1), 54–68. doi:10.1016/j.mbs.2014.01.012.

    Article  PubMed  Google Scholar 

  • Borbély, A.A. (1982). A two process model of sleep regulation Human neurobiology.

  • Brown, R.E., McKenna, J.T., Winston, S., Basheer, R., Yanagawa, Y., Thakkar, M.M., & McCarley, R.W. (2008). Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. European Journal of Neuroscience, 27(2), 352–363. doi:10.1111/j.1460-9568.2008.06024.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Colino, A., & Halliwell, J.V. (1987). Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature, 328(6125), 73–7. doi:10.1038/328073a0.

    Article  CAS  PubMed  Google Scholar 

  • Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89 (5), 2707–25. doi:10.1152/jn.00845.2002.

    Article  PubMed  Google Scholar 

  • Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93(2), 91–108. doi:10.1007/s00422-005-0574-y.

    Article  CAS  PubMed  Google Scholar 

  • Daan, S., Beersma, D.G.M., & Borbély, A.A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. The American Journal of Physiology, 246(2 Pt 2), 161– 183.

    Google Scholar 

  • Datta, S., & MacLean, R.R. (2007). Neurobiological Mechanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of Historical Evidence and Inclusion of Contemporary Cellular and Molecular Evidence. Neuroscience Biobehavior Reviews, 31(5), 775–824. doi:10.1016/j.biotechadv.2011.08.021.Secreted.

    Article  CAS  Google Scholar 

  • David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20(3), 1743–1755. doi:10.1016/j.neuroimage.2003.07.015.

    Article  PubMed  Google Scholar 

  • Davies, M.F., Deisz, R.A., Prince, D.A., & Peroutka, S.J. (1987). Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Research, 423(1-2), 347–52. doi:10.1016/0006-8993(87)90861-4 10.1016/0006-.

    Article  CAS  PubMed  Google Scholar 

  • Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., & Friston, K.J. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4(8), e1000,092. doi:10.1371/journal.pcbi.1000092.

    Article  Google Scholar 

  • Deco, G., Martí, D., & Ledberg, A. (2009). Effective reduced diffusion-models: a data driven approach to the analysis of neuronal dynamics. PLoS Computational Biology, 5(12), e1000,587. doi:10.1371/journal.pcbi.1000587.

    Article  Google Scholar 

  • Diniz Behn, C. G., & Booth, V. (2010). Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network. Journal of Neurophysiology, 103(4), 1937–1953. doi:10.1152/jn.00795.2009.

    Article  PubMed  Google Scholar 

  • Diniz Behn, C.G., & Booth, V. (2012). A fast-slow analysis of the dynamics of REM sleep. SIAM Journal on Applied Dynamical Systems, 11(1), 212–242. doi:10.1137/110832823.

    Article  Google Scholar 

  • Diniz Behn, C.G., Brown, E.N., Scammell, T.E., & Kopell, N.J. (2007). Mathematical model of network dynamics governing mouse sleep wake behavior. Journal of Neurophysiology, 97, 3828–3840. doi:10.1152/jn.01184.2006.

    Article  Google Scholar 

  • Disney, A.A., Aoki, C., & Hawken, M.J. (2007). Gain modulation by nicotine in macaque v1. Neuron, 56, 701–713. doi:10.1016/j.neuron.2007.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleshner, M., Booth, V., Forger, D.B., & Diniz Behn, C.G. (2011). Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. Philosophical Transactions of the Royal Society A: Mathematical, physical, and engineering sciences, 369(1952), 3855–3883. doi:10.1098/rsta.2011.0085.

    Article  Google Scholar 

  • Forger, D.B., Jewett, M.E., & Kronauer, R.E. (1999). A simpler model of the human circadian pacemaker. Journal of Biological Rhythms, 14(6), 532–537. doi:10.1177/074873099129000867.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, P.M., Saper, C.B., & Lu, J. (2007). The pontine REM switch: past and present. The Journal of physiology, 584(Pt 3), 735–741. doi:10.1113/jphysiol.2007.140160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage, P.W. (1992). Activation and modulation of neuronal K+ channels by GABA. Trends in neurosciences, 15(2), 46–51. doi:10.1016/0166-2236(92)90025-4.

    Article  CAS  PubMed  Google Scholar 

  • Gleit, R.D., Diniz Behn, C.G., & Booth, V. (2013). Modeling interindividual differences in spontaneous internal desynchrony patterns. Journal of Biological Rhythms, 28(5), 339–55. doi:10.1177/0748730413504277.

    Article  PubMed  Google Scholar 

  • Gulledge, A.T., Bucci, D.J., Zhang, S.S., Matsui, M., & Yeh, H.H. (2009). M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons. The Journal of Neuroscience, 29(31), 9888–9902. doi:10.1523/JNEUROSCI.1366-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo, M.E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behavioural Brain Research, 67(1), 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Iber, C., Ancoli-Israel, S., Chesson Jr., A.L., & Quan, S.F. (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules Terminology and Technical Specifications 1st ed.

  • Jansen, B.H., Zouridakis, G., & Brandt, M.E. (1993). A neurophysiologically-based mathematical model of flash visual evoked potentials. Electrical Engineering, 283, 275–283.

    Google Scholar 

  • Kales, A., & Rechtschaffen, A. (1968). Rechtschaffen, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network.

  • Kiebel, S.J., Garrido, M.I., Moran, R.J., & Friston, K.J. (2008). Dynamic causal modelling for EEG and MEG. Cognitive Neurodynamics, 2(2), 121–136. doi:10.1007/s11571-008-9038-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, R., Bose, A., & Mallick, B.N. (2012). A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One, 7(8), 1–17. doi:10.1371/journal.pone.0042059.

    Article  Google Scholar 

  • Léna, I., Parrot, S., Deschaux, O., Muffat-Joly, S., Sauvinet, V., Renaud, B., Suaud-Chagny, M.F., & Gottesmann, C. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81(6), 891–899. doi:10.1002/jnr.20602.

    Article  PubMed  Google Scholar 

  • Liljenström, N., & Hasselmo, M.E. (1995). Cholinergic modulation of cortical oscillatory dynamics. Journal of Neurophysiology, 74(1), 288–297.

    PubMed  Google Scholar 

  • Lopes da Silva, F.H., Hoeks, A., Smits, H., & Zetterberg, L.H. (1974). Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15(1), 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Lu, J., Sherman, D., Devor, M., & Saper, C.B. (2006). A putative flip-flop switch for control of REM sleep. Nature, 441(7093), 589–594. doi:10.1038/nature04767.

    Article  CAS  PubMed  Google Scholar 

  • Luppi, P.H., Gervasoni, D., Verret, L., Goutagny, R., Peyron, C., Salvert, D., Leger, L., & Fort, P. (2006). Paradoxical (REM) sleep genesis: The switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. Journal of Physiology Paris, 100(5-6), 271–283. doi:10.1016/j.jphysparis.2007.05.006.

    Article  CAS  Google Scholar 

  • Lydic, R., & Baghdoyan, H.A. (2005). Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology, 103(6), 1268–1295. doi:10.1097/00000542-200512010-00024.

    Article  PubMed  Google Scholar 

  • Madison, D.V., & Nicoll, R.A. (1982). Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature, 299, 636–638. doi:10.1038/299636a0.

    Article  CAS  PubMed  Google Scholar 

  • Madison, D.V., & Nicoll, R.A. (1986). Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurons, in vitro. The Journal of Physiology, 372, 221– 244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madison, D. V., Lancaster, B., & Nicoll, R.A. (1987). Voltage clamp analysis of cholinergic action in the hippocampus. The Journal of Neuroscience, 7(3), 733–741.

    CAS  PubMed  Google Scholar 

  • Marreiros, A.C., Daunizeau, J., Kiebel, S.J., & Friston, K.J. (2008). Population dynamics: Variance and the sigmoid activation function. NeuroImage, 42, 147–157. doi:10.1016/j.neuroimage.2008.04.239.

    Article  PubMed  Google Scholar 

  • McCarley, R.W., & Hobson, J.A. (1975). Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science, 189(4196), 58–60. doi:10.1126/science.1135627.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D.A. (1989). Cholinergic and noradrenergic modulation of thalamocortical processing. Trends in Neurosciences, 12(6), 215–221. doi:10.1016/0166-2236(89)90125-2.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D.A., & Huguenard, J.R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68(4), 1384–400.

    CAS  PubMed  Google Scholar 

  • Moruzzi, G. (1972). The sleep-waking cycle. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, 64, 1–165.

    CAS  PubMed  Google Scholar 

  • Nicoll, R.A., Malenka, R.C., & Kauer, J.A. (1990). Functional comparison of neurotransmitter receptor subtypes in mamMalian central nervous system. Physiological Reviews, 70(2), 513– 565.

    CAS  PubMed  Google Scholar 

  • Patel, A.J., Honoré, E., Lesage, F., Fink, M., Romey, G., & Lazdunski, M. (1999). Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neuroscience, 2(5), 422–426. doi:10.1038/8084.

    Article  CAS  PubMed  Google Scholar 

  • Peyron, C., Tighe, D.K., Van den Pol, A.N., de Lecea, L., Heller, H.C., Sutcliffe, J.G., & Kilduff, T.S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience, 015(23), 9996–10.

    Google Scholar 

  • Phillips, A.J.K., & Robinson, P.A. (2007). A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. Journal of Biological Rhythms, 22(2), 167–179. doi:10.1177/0748730406297512.

    Article  CAS  PubMed  Google Scholar 

  • Rasch, B., & Born, J. (2013). About sleep’s role in memory. Physiological Reviews, 93(2), 681–766. doi:10.1152/physrev.00032.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rempe, M.J., Best, J., & Terman, D.H. (2009). A mathematical model of the sleep/wake cycle. Journal of Mathematical Biology, 60(5), 615–644. doi:10.1007/s00285-009-0276-5.

    Article  PubMed  Google Scholar 

  • Rößler, A. (2010). Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM Journal on Numerical Analysis, 48(3), 922–952 . doi:10.1137/09076636X.

    Article  Google Scholar 

  • Saint, D.A., Thomas, T., & Gage, P.W. (1990). GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neuroscience Letters, 118(1), 9–13. doi:10.1016/0304-3940(90)90236-3.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vives, M.V., & McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–34. doi:10.1038/79848.

    Article  CAS  PubMed  Google Scholar 

  • Saper, C.B., Chou, T.C., & Scammell, T.E. (2001). The sleep switch: Hypothalamic control of sleep and wakefulness. Trends in Neurosciences, 24(12), 726–731. doi:10.1016/S0166-2236(00)02002-6.

    Article  CAS  PubMed  Google Scholar 

  • Saper, C.B., Scammell, T.E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263. doi:10.1038/nature04284.

    Article  CAS  PubMed  Google Scholar 

  • Sapin, E., Lapray, D., Bérod, A., Goutagny, R., Léger, L., Ravassard, P., Clément, O., Hanriot, L., Fort, P., & Luppi, P.H. (2009). Localization of the brainstem GABAergic neurons controlling Paradoxical (REM) sleep. PLoS One, 4(1). doi:10.1371/journal.pone.0004272.

  • Schellenberger Costa, M. (2006a). Simulation routine of the model. https://github.com/miscco/NM_Cortex_SR.

  • Soma, S., & Shimegi, S. (2016). Cholinergic modulation of response gain in the primary visual cortex of the macaque. Journal of Neurophysiology, 107, 283–291. doi:10.1152/jn.00330.2011.

  • Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., & Wright, J.J. (2005). The sleep cycle modelled as a cortical phase transition. Journal of Biological Physics, 31(3-4), 547–569. doi:10.1007/s10867-005-1285-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talley, E.M., & Bayliss, D.A. (2002). Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels volatile anesthetics and neurotransmitters share a molecular site of action. Journal of Biological Chemistry, 277(20), 17,733–17,742. doi:10.1074/jbc.M200502200.

    Article  CAS  Google Scholar 

  • Tamakawa, Y., Karashima, A., Koyama, Y., Katayama, N., & Nakao, M. (2006). A quartet neural system model orchestrating sleep and wakefulness mechanisms. Journal of Neurophysiology, 95(4), 2055–2069. doi:10.1152/jn.00575.2005.

    Article  PubMed  Google Scholar 

  • Timmons, D., Geisert, E., Stewart, E., Lorenzon, M., & Foehring, R. C. (2004). Alpha 2-Adrenergic receptor-mediated modulation of calcium current in neocortical pyramidal neurons. Brain Research, 1014, 184–196. doi:10.1016/j.brainres.2004.04.025.

    Article  CAS  PubMed  Google Scholar 

  • Weigenand, A., Schellenberger Costa, M., Ngo, H.V.V., Claussen, J.C., & Martinetz, T. (2014). Characterization of K-complexes and slow wave activity in a neural mass model. PLoS Computational Biology, 10, e1003,923. doi:10.1371/journal.pcbi.1003923.

    Article  Google Scholar 

  • Wendling, F., Bartolomei, F., Bellanger, J.J.J., & Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience, 15(9), 1499–1508. doi:10.1046/j.1460-9568.2002.01985.x.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z.W., & Arsenault, D. (2005). Gain modulation by serotonin in pyramidal neurones of the rat prefrontal cortex. The Journal of Physiology, 2, 379–394. doi:10.1113/jphysiol.2005.086066.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Arne Weigenand, Hong-Viet V. Ngo, Lisa Marshall, and Matthias Mölle for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schellenberger Costa.

Additional information

Action Editor: Michael Breakspear

Jens Christian Claussen and Thomas Martinetz contributed equally

Appendix

Appendix

1.1 A Model equations

The cortex model is given by the following set of equations:

$$\begin{array}{@{}rcl@{}} \tau_{p} \dot V_{p} &=& - I^{p}_{\mathrm{L}} - I_{\text{AMPA}}(s_{ep}) - I_{\text{GABA}}(s_{gp}) - \tau_{p} C_{m}^{-1} I_{\text{KNa}}, \\ \tau_{i} \dot V_{i} &=& - I^{i}_{\mathrm{L}} - I_{\text{AMPA}}(s_{ei}) - I_{\text{GABA}}(s_{gi}), \\ \ddot s_{ep} &=& {\gamma_{e}^{2}}\left( N_{pp} Q_{p}(V_{p})+\phi_{n} - s_{ep}\right) - 2\gamma_{e} \dot s_{ep}, \\ \ddot s_{gp} &=& {\gamma_{g}^{2}}\left( N_{pi} Q_{i}(V_{i})\hspace{2.6em} - s_{gp}\right) - 2\gamma_{g} \dot s_{gp}, \\ \ddot s_{ei} &=& {\gamma_{e}^{2}}\left( N_{ip} Q_{p}(V_{p})\,+\phi^{\prime}_{n} - s_{ei}\right) - 2\gamma_{e} \dot s_{ei}, \\ \ddot s_{gi} &= &{\gamma_{g}^{2}}\left( N_{ii}\,Q_{i}(V_{i})\hspace{2.6em} - s_{gi}\right) - 2\gamma_{g} \dot s_{gi}, \\ \left[\dot {\text{Na}}\right] &=& (\alpha_{\text{Na}}Q_{p}(V_{p})-\text{Na}_{\text{pump}}([\text{Na}]))/\tau_{\text{Na}}. \\ \tau_{g}\dot{g}_{\text{KNa}} &=& \bar{g}_{\text{KNa}}(1-0.95C_{A})(1-0.75C_{E})(1+0.85C_{G}) -g_{\text{KNa}}, \\ \tau_{\sigma}\dot{\sigma}_{p} &=& \bar{\sigma}_{p}-(4 C_{E} + 2 C_{A}) - \sigma_{p}. \end{array} $$

With the currents defined by:

$$\begin{array}{@{}rcl@{}} I_{\mathrm{L}} &=& \bar{g}_{L} (V_{k} - E_{\mathrm{L}}), \\ I_{\text{AMPA}}&=& \bar{g}_{\text{AMPA}} s_{ek} (V_{k} - E_{\text{AMPA}}), \\ I_{\text{GABA}}&=& \bar{g}_{\text{GABA}} s_{gk}(V_{k} - E_{\text{GABA}}), \\ I_{\text{KNa}} &=& g_{\text{KNa}} w_{\text{KNa}} (V_{p} - E_{\mathrm{K}}), \\ w_{\text{KNa}} &=& \frac{0.37}{1+\left( \frac{38.7}{[\text{Na}]}\right)^{3.5}}. \end{array} $$

The sodium pump and firing rate functions are given by:

$$\begin{array}{@{}rcl@{}} \text{Na}_{\text{pump}}([\text{Na}]) &=&R_{\text{pump}}\left( \frac{[\text{Na}]^{3}}{[\text{Na}]^{3}+3375}- \frac{[\text{Na}]_{\text{eq}}^{3}}{[\text{Na}]_{\text{eq}}^{3}+3375}\right), \\ Q_{k}(V_{k}) &=& \frac{Q_{k}^{\max}}{1 + \exp (-(V_{k} - \theta_{k})/\sigma_{k})}, \\ Q_{k}^{SR}(Y) &=& \frac{F_{k}^{\max}}{1 + \exp (-(Y - \beta_{k})/\alpha_{k})}. \end{array} $$

The sleep regulatory network is described by:

$$\begin{array}{@{}rcl@{}} \tau_{W} \dot{F}_{W} &=& Q_{W}\left( g_{GW}C_{G} + g_{AW}C_{A}\right) - F_{W}, \\ \tau_{N} \dot{F}_{N} &=& Q_{N}\left( g_{EN}C_{N}\right) - F_{N}, \\ \tau_{R} \dot{F}_{R} &=& Q_{R}\left( g_{ER}C_{E} + g_{GR}C_{G} + g_{AR} C_{A}\right) - F_{R}, \\ \tau_{E}\dot{C}_{E} &=& \tanh(F_{W}/\gamma_{E}) -C_{E}, \\ \tau_{G}\dot{C}_{G} &=& \tanh(F_{N}/\gamma_{G}) -C_{G}, \\ \tau_{A}\dot{C}_{A} &=& \tanh(F_{R}/\gamma_{A}) -C_{A}, \\ \dot{h} &=& \frac{h^{\max}-h}{{\tau^{w}_{h}}}\mathcal{H}(F_{W} - \theta_{h}) - \frac{h}{{\tau^{s}_{h}}}\mathcal{H}(\theta_{h}-F_{W}). \end{array} $$

1.2 B Parameter values

Here, we describe the different symbols used in the cortex and sleep regulation module and give their values.

It should be noted, that in the original manuscript by Diniz Behn and Both the parameter values for the sleep regulatory network are given in seconds or hours. However, since we combine the cortical and the sleep regulatory model, we have to decide on one time unit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.S., Born, J., Claussen, J.C. et al. Modeling the effect of sleep regulation on a neural mass model. J Comput Neurosci 41, 15–28 (2016). https://doi.org/10.1007/s10827-016-0602-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0602-z

Keywords

Navigation