Skip to main content
Log in

Modified thalamocortical model: A step towards more understanding of the functional contribution of astrocytes to epilepsy

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

It is evident that the cortex plays a primary role in seizure generation. At the same time, various experimental results clearly confirm that thalamic neurons are also actively involved in seizure generation and spreading. On the other hand, recent neurophysiologic findings suggest that astrocytes regulate dynamically the synaptic activity in neuronal networks. Therefore, in the present study, the thalamocortical neural population model (TCPM) is modified by embedding into the model the functional role of astrocytes in the regulation of synaptic transmission. Using the modified TCPM (MTCPM) we examined the hypothesis that one of the possible causes of neural hypersynchronization is the dysfunction of astrocytes in the regulatory feedback loop. Then, two MTCPMs are coupled via excitatory synapses and the astrocytes are also coupled together through gap junctions. Utilizing the MTCPM and CMTCPM, the transition from normal to malfunctioned states is analyzed using a dynamical system approach. In this way, the hypothesis is investigated and it is demonstrated that the healthy astrocytes provide feedback control to regulate neural activity. That is, the astrocytes compensate to a large extent variations in the coupling between neural populations and maintain the balance between the excitation and inhibition levels. However, the malfunctioned astrocytes are no longer able to regulate and/or compensate the excessive increase of the inter-population coupling strength. As a consequence, disruption of the signaling function of astrocytes could contribute to the neuronal hyperexcitability and generating epileptiform activity. These results suggest that astrocytes might be one of the potential targets for the treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amiri, M., Davoodi, E., Bahrami, F., & Raza, M. (2011a). Bifurcation analysis of the Poincaré map function of intracranial EEG signals in temporal lobe epilepsy patients. Math and Computers in Simulation, 81, 2471–2491.

    Article  Google Scholar 

  • Amiri, M., Bahrami, F., & Janahmadi, M. (2011b). Functional modeling of astrocytes in epilepsy: A feedback system perspective”. Neural Computing and Applications, 20(8), 1131–1139.

    Article  Google Scholar 

  • Amiri, M., Montaseri, G., & Bahrami, F. (2011c). On the role of astrocytes in synchronization of two coupled neurons: A mathematical perspective. Biological Cybernetics, 105, 153–166.

    Article  Google Scholar 

  • Amiri, M., Bahrami, F., & Janahmadi, M. (2012a). Functional contributions of astrocytes in synchronization of a neuronal network model. Journal of Theoretical Biology, 292, 60–70.

    Article  PubMed  Google Scholar 

  • Amiri, M., Bahrami, F., & Janahmadi, M. (2012b). On the role of astrocytes in epilepsy: a functional modeling approach. Neuroscience Research, 7, 172–180.

    Article  Google Scholar 

  • Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22, 208–215.

    Article  PubMed  CAS  Google Scholar 

  • Benarroch, E. E. (2005). Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clinic Proceedings, 80, 1326–1338.

    Article  PubMed  CAS  Google Scholar 

  • Bentzen, N. C. K., Zhabotinsky, A. M., & Laugesen, J. L. (2009). Modeling of glutamate-induced dynamical patterns. International Journal of Neural Systems, 19, 395–407.

    Article  PubMed  CAS  Google Scholar 

  • Binder, D. K., & Steinhäuser, C. (2009). Role of astrocytes in Epilepsy. V. Parpura, P.G. Haydon (Eds.), Astrocytes in (Patho)Physiology of the Nervous System (pp. 649–671). Springer Science.

  • Chakravarthy, N., Sabesan, S., Tsakalis, K., & Iasemidis, L. D. (2009a). Controlling epileptic seizures in a neural mass model. Journal of Combinatorial Optimization, 17, 98–116.

    Article  Google Scholar 

  • Chakravarthy, N., Tsakalis, K., Sabesan, S., & Iasemidis, L. D. (2009b). Homeostasis of brain dynamics in epilepsy: A feedback control systems perspective of seizures. Annals of Biomedical Engineering, 37, 565–585.

    Article  Google Scholar 

  • Cressman, J. R., Jr., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience, 26, 159–170.

    Article  PubMed  Google Scholar 

  • De Keyser, J., Mostert, J. P., & Koch, M. W. (2008). Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. Journal of the Neurological Sciences, 267, 3–16.

    Article  PubMed  Google Scholar 

  • Destexhe, A. (2008). Corticothalamic feedback: a key to explain absence seizures. In I. Soltesz & K. Staley (Eds.), Computational neuroscience in epilepsy (pp. 184–214). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Eid, T., Lee, T. S., Thomas, M. J., Amiry-Moghaddam, M., Bjørnsen, L. P., Spencer, D. D., et al. (2005). Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 102, 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  • Fellin, T. (2009). Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. Journal of Neurochemistry, 108, 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Fellin, T., & Carmignoto, G. (2004). Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J. Physio, 559, 3–15.

    Article  CAS  Google Scholar 

  • Fellin, T., Pascual, O., & Haydon, P. G. (2006). Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Journal of Physiology, 21, 208–215.

    Article  CAS  Google Scholar 

  • Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In I. Soltesz & K. Staley (Eds.), Computational neuroscience in epilepsy (pp. 419–439). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Garbo, A. D. (2009). Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. Journal of Biological Physics, 35, 361–382.

    Article  PubMed  Google Scholar 

  • Gertrudis, P., & Araque, A. (2005). Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. Journal of Neuroscience, 25, 2192–2203.

    Article  Google Scholar 

  • Halassa, M. M., Fellin, T., & Haydon, P. G. (2007). The tripartite synapse: roles for gliotransmission in health and disease. Trends in Molecular Medicine, 13, 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Halassa, M. M., Fellin, T., & Haydon, P. G. (2009). Tripartite synapses: Roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology, 57, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Haydon, P. G., & Araque, A. (2002). Astrocytes as modulators of synaptic transmission. In: The tripartite synapse: Glia in Synaptic Transmission (pp. 185–198). New York: Oxford UP.

  • Hertz, L., & Zielke, H. R. (2004). Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends in Neurosciences, 27, 735–743.

    Article  PubMed  CAS  Google Scholar 

  • Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50, 549–558.

    Article  PubMed  Google Scholar 

  • Iasemidis, L. D., Shiau, D. S., Sackellares, J. C., Pardalos, P. M., & Prasad, A. (2004). Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Transactions on Biomedical Engineering, 51, 493–506.

    Article  PubMed  Google Scholar 

  • Jabs, R., Seifert, G., & Steinhäuser, C. (2008). Astrocytic function and its alteration in the epileptic brain. Epilepsia, 49, 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, S. (2010). Synchronization of Ca2+ oscillations: involvement of ATP release in astrocytes. FEBS Journal, 277, 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., & Ikegaya, Y. (2011). Large-scale calcium waves traveling through astrocytic networks in vivo. The Journal of Neuroscience, 31(7), 2607–2614.

    Article  PubMed  CAS  Google Scholar 

  • Lanerolle, N. C., Lee, T.-S., & Spencer, D. D. (2010). Astrocytes and epilepsy. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 7, 424–438.

    Google Scholar 

  • Larrosa, B., Pastor, J., Lopez-Aguado, L., & Herreras, O. (2006). Role for glutamate and glia in the fast network oscillations preceding spreading depression. Neuroscience, 141, 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Lehnertz, K., Bialonski, S., Horstmann, M. T., Krug, D., Rothkegel, A., Staniek, M., et al. (2009). Synchronization phenomena in human epileptic brain networks. Journal of Neuroscience Methods, 183, 42–48.

    Article  PubMed  Google Scholar 

  • Liley, D. T. J., Cadusch, P. J., & Dafilis, M. P. (2002). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13, 67–113.

    Google Scholar 

  • Lopes da Silva, F. H. (2008). The impact of EEG/MEG signal processing and modeling in the diagnostic and management of epilepsy. IEEE Review of Biomedical Engineering, 1, 143–156.

    Article  Google Scholar 

  • Lopes da Silva, F. H., Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P., & Velis, D. N. (2003). Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia, 44(12), 72–83.

    Article  PubMed  Google Scholar 

  • Nadkarni, S., & Jung, P. (2004). Dressed neurons: modeling neural-glial interactions. Physical Biology, 1, 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Nadkarni, S., & Jung, P. (2007). Modeling synaptic transmission of the tripartite synapse. Physical Biology, 4, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. A. (2003). New roles for astrocytes: regulation of synaptic transmission. Trends in Neurosciences, 26, 536–542.

    Article  PubMed  CAS  Google Scholar 

  • Pluchino, S., & Martino, G. (2008). The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. Journal of the Neurological Sciences, 265, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Postnov, D. E., Ryazanova, L. S., & Sosnovtseva, O. V. (2007). Functional modeling of neural-glial interaction. BioSystems, 89, 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Postnov, D. E., Koreshkov, R. N., Brazhe, N. A., Brazhe, A. R., & Sosnovtseva, O. V. (2009). Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. Journal of Biological Physics, 35, 425–445.

    Article  PubMed  CAS  Google Scholar 

  • Ricci, G., Volpi, L., Pasquali, L., Petrozzi, L., & Siciliano, G. (2009). Astrocyte-neuron interactions in neurological disorders. Journal of Biological Physics, 35, 317–336.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski, M. A. (2005). Astrocytes get in the act in epilepsy. Nature Medicine, 11, 919–920.

    Article  PubMed  CAS  Google Scholar 

  • Santello, M., & Volterra, A. (2009). Synaptic modulation by astrocytes via Ca2+−dependent glutamate release. Neuroscience, 158, 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, G., Carmignoto, G., & Steinhäuser, C. (2010). Astrocyte dysfunction in epilepsy. Brain Research Reviews, 63, 212–221.

    Article  PubMed  CAS  Google Scholar 

  • Silchenko, A. N., & Tass, P. A. (2008). Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biological Cybernetics, 98, 61–74.

    Article  PubMed  Google Scholar 

  • Steriade, M., & Contreras, D. (1998). Spike-wave complexes and fast components of cortically generated seizures. Role of neocortex and thalamus. Journal of Neurophysiology, 80, 1439–1455.

    PubMed  CAS  Google Scholar 

  • Suffczynski, P., Kalitzin, S., & Lopes Da Silva, F. H. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126, 467–484.

    Article  PubMed  CAS  Google Scholar 

  • Suffczynski, P., Wendling, F., Bellanger, J. J., & Lopes Da Silva, F. H. (2006). Some insights into computational models of (patho) physiological brain activity. Proceedings of the IEEE, 94, 784–804.

    Article  Google Scholar 

  • Suffczynski, P., Kalitzin, S., & Lopes da Silva, F. H. (2008). A neuronal network model of corticothalamic oscillations: the emergence of epileptiform absence seizures. In I. Soltesz & K. Staley (Eds.), Computational neuroscience in epilepsy (pp. 403–418). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Tsakalis, K., & Iasemidis, L. D. (2006). Control aspects of a theoretical model for epileptic seizures. International Journal of Bifurcation and Chaos, 16, 2013–2027.

    Article  Google Scholar 

  • Tsakalis, K., Chakravarthy, N., Sabesan, S., Iasemidis, L. D., & Pardalos, P. M. (2006). A feedback control systems view of epileptic seizures. Cybernetics and Systems Analysis, 42, 483–495.

    Article  Google Scholar 

  • Ullah, G., Jung, P., & Cornell-Bell, A. H. (2006). Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium, 39, 197–208.

    Article  PubMed  CAS  Google Scholar 

  • Ullah, G., Cressman, J. R., Jr., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal of Computational Neuroscience, 26, 171–183.

    Article  PubMed  Google Scholar 

  • Volman, V., Ben-Jacob, E., & Levine, H. (2007). The astrocyte as a gatekeeper of synaptic information transfer. Neural Computation, 19:303–326.

    Google Scholar 

  • Volterra, A., & Steinhäuser, C. (2004). Glial modulation of synaptic transmission in the hippocampus. GLIA, 47, 249–257.

    Article  PubMed  Google Scholar 

  • Wendling, F., Hernandez, A., Bellanger, J. J., Chauvel, P., & Bartolomei, F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of Clinical Neurophysiology, 22, 343–356.

    PubMed  Google Scholar 

  • Wetherington, J., Serrano, G., & Dingledine, R. (2008). Astrocytes in the epileptic brain. Neuron, 58, 168–178.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Amiri.

Additional information

Action Editor: Catherine E. Carr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiri, M., Bahrami, F. & Janahmadi, M. Modified thalamocortical model: A step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33, 285–299 (2012). https://doi.org/10.1007/s10827-012-0386-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0386-8

Keywords

Navigation