Skip to main content
Log in

A new 3D mass diffusion–reaction model in the neuromuscular junction

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A three-dimensional model of the reaction-diffusion processes of a neurotransmitter and its ligand receptor in a disk shaped volume is proposed which represents the transmission process of acetylcholine in the synaptic cleft in the neuromuscular junction. The behavior of the reaction-diffusion system is described by a three-dimensional diffusion equation with nonlinear reaction terms due to the rate processes of acetylcholine with the receptor. A new stable and accurate numerical method is used to solve the equations with Neumann boundaries in cylindrical coordinates. The simulation analysis agrees with experimental measurements of end-plate current, and agrees well with the results of the conformational state of the acetylcholine receptor as a function of time and acetylcholine concentration of earlier investigations with a smaller error compared to experiments. Asymmetric emission of acetylcholine in the synaptic cleft and the subsequent effects on open receptor population is simulated. Sensitivity of the open receptor dynamics to the changes in the diffusion parameters and neuromuscular junction volume is investigated. The effects of anisotropic diffusion and non-symmetric emission of transmitter at the presynaptic membrane is simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aidley, D. (1998). The physiology of excitable cells (4th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Anderson, C. R., & Stevens, C. F. (1973). Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. Journal of Physiology, 235, 655–691.

    PubMed  CAS  Google Scholar 

  • Barres, B. A. (2008). The mystery and magic of glia: A perspective on their roles in health and disease. Neuron, 60, 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Barron, B. R., & Dai, W. (2006). A hybrid FE-FD scheme for solving parabolic two-step micro heat transport equations in an irregularly shaped three dimensional double-layered thin film. Numerical Heat Transfer, Part B, 49, 437–465.

    Article  CAS  Google Scholar 

  • Barry, P., & Lynch, J. (2005). Ligand-gated channels. IEEE Transactions on Nanobioscience, 4, 70–80.

    Article  PubMed  Google Scholar 

  • Bartol, T. (1991). Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophysics Journal, 59, 1290–1307.

    Article  CAS  Google Scholar 

  • Beers, W. H., & Reich, E. (1970). Structure and activity of acetylcholine. Nature, 228, 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y., Suen, J., Radic, Z., Bond, S., Holst, M., & McCammon, J. (2007). Continuum simulations of acetylcholine diffusion with reaction-determined boundaries in neuromuscular junction models. Biophysical Chemistry, 127, 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Chu, P., & Fan, C. (1998). A three-point combined compact difference scheme. Journal of Computational Physics, 140, 370–399.

    Article  Google Scholar 

  • Dai, W., Zhang, Y., & Nassar, R. (2000). A hybrid finite element-alternating direction implicit method for solving parabolic differential equations on multilayers with irregular geometry. Journal of Computational and Applied Mathematics, 117, 1–16.

    Article  Google Scholar 

  • Eusebi, F. (2007). Ricardo miledi and the foundations of synaptic and extra-synaptic neurotransmitter physiology. Journal of Physiology, 581, 890–892.

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, A., & Puu, G. (1984). Kinetics of inhibition of acetylcholinesterase from the electric eel by some organophosphates and carbamates. European Journal of Biochemistry, 140, 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Friboulet, A., & Thomas, D. (1993). Reaction-diffusion coupling in a structured system: Application to the quantitative simulation of endplate currents. Journal of Theoretical Biology, 160, 441–455.

    Article  PubMed  CAS  Google Scholar 

  • Giniatullin, L. S. (1995). Modeling endplate currents: Dependence on quantum secretion probability and decay of miniature current. European Biophysics Journal, 23, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Hartzell, H., & Kuffler, S. W. (1975). Post-synaptic potentiation: Interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. Journal of Physiology, 251, 427–463.

    PubMed  CAS  Google Scholar 

  • Hess, G., & Andrews, J. (1977). Functional acetylcholine receptor-electroplax membrane microsacs: Purification and characterization. Proceedings of the National Academy of Sciences, 74, 482–486.

    Article  CAS  Google Scholar 

  • Jackson, M. B. (1989). Perfection of a synaptic receptor: Kinetics and energetics of the acetylcholine receptor. Proceedings of the National Academy of Sciences, 86, 2199–2203.

    Article  CAS  Google Scholar 

  • Johnston, D., & Mao-Sin Wu, S. (1995). Foundations of cellular neurophysiology. Cambridge: MIT Press.

    Google Scholar 

  • Junge, D. (1992). Nerve and muscle excitation. Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Kandel, E. (2000). Principles of neuroscience (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Katz, B., & Miledi, R. (1973). The binding of acetylcholine to receptors and its removal from the synaptic cleft. Journal of Physiology, 231, 549–574.

    PubMed  CAS  Google Scholar 

  • Kleinle, J., Vogt, K., Luscher, H., Muller, L., Senn, W., Wyler, K., et al. (1996). Transmitter concentration profiles in the synaptic cleft: An analytical model of release and diffusion. Biophyscal Journal, 71, 2413–2426.

    Article  CAS  Google Scholar 

  • Kordas, M. (1972). An attempt at an analysis of the factors determining the time course of the end-plate current. Journal of Physiology, 224, 333–348.

    PubMed  CAS  Google Scholar 

  • Kordas, M. (1977). On the role of junctional cholinesterase in determining the time course of the endplate current. Journal of Physiology, 270, 133–150.

    PubMed  CAS  Google Scholar 

  • Kuzenetsov, A. V., & Hooman, K. (2008). Modeling traffic jams in intracellular transport in axons. International Journal of Heat and Mass Transfer, 51, 5695–5699.

    Article  Google Scholar 

  • Lester, H. (1977). The response to acetylcholine. Scientific American, USA, 236, 106–117.

    Article  CAS  Google Scholar 

  • Levitan, I. (1997). The neuron: Cell and molecular biology. New York: Oxford University Press.

    Google Scholar 

  • Madsen, B., Edeson, R., Lam, H., & Milne, R. (1984). Numerical simulation of miniature endplate currents. Neuroscience Letters, 48, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Magleby, K. L., & Terrar, D. A. (1974). Factors affecting the time course of decay of end-plate currents: A possible cooperative action of acetylcholine on receptors at the neuromuscular junction. Journal of Physiology, 244, 467–495.

    Google Scholar 

  • Mathie, A., & Cull-Candy, S. G. (1991). Conductance and kinetic properties of single nicotinic acetylcholine receptor channels in rat sympathetic neurones. Journal of Physiology, 439, 717–750.

    PubMed  CAS  Google Scholar 

  • Matthews, G. (1991). Cellular physiology of nerve and muscle (2nd ed.). Cambridge: Blackwell Scientific Publications.

    Google Scholar 

  • Miledi, R., Molenaar, P. C., & Polak, R. L. (1984). Acetylcholinesterase activity in intact and homogenized skeletal muscle of the frog. Journal of Physiology, 349, 663–686.

    PubMed  CAS  Google Scholar 

  • Naka, T., & Sakamoto, N. (2002). Simulation analysis of the effects of simultaneous release of quanta of acetylcholine on the end plate current at the neuromuscular junction. Mathematics and Computers in Simulation, 59, 87–94.

    Article  Google Scholar 

  • Naka, T., & Shiba, K. S. (1997). A two-dimensional compartment model for the reaction-diffusion system of acetylcholine in the synaptic cleft at the neuromuscular junction. Biosystems, 41, 17–27.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D. (2007). Neuroscience (4th ed.). Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Rosenberry, T. (1979). Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase. Biophysical Journal, 26, 263–290.

    Article  PubMed  CAS  Google Scholar 

  • Schild, J. (1995). Afferent synaptic drive of rat medial nucleus tractus solitarius neurons: Dynamic simulation of graded vesicular mobilization, release, and non-NMDA receptor kinetics. Journal of Neurophysiology, 74, 1529–1548.

    PubMed  CAS  Google Scholar 

  • Smart, J., & McCammon, J. (1998). Analysis of synaptic transmission in the neuromuscular junction using a continuum finite element model. Biophysical Journal, 75, 1679–1688.

    Article  PubMed  CAS  Google Scholar 

  • Tai, K., Bond, S., MacMillan, H., Baker, N., Holst, M., & McCammon, J. (2003). Finite element simulations of acetylcholine diffusion in neuromuscular junctions. Biophysical Journal, 84, 2234–2241.

    Article  PubMed  CAS  Google Scholar 

  • Truskey, G. (2004). Transport phenomena in biological systems. New Jersey: Prentice Hall.

    Google Scholar 

  • Vieth, W., & Chotani, G. (1983). Diffusional/kinetic analysis of the neurotransmission process at the nerve-muscle junction. Annals of the New York Academy of Sciences, 413, 114–132.

    Article  PubMed  CAS  Google Scholar 

  • Vieth, W., & Ciftci, T. (1981). Transport models of the neurotransmitter-receptor interaction. Annals of the New York Academy of Sciences, 369, 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Wathey, J. C., & Nass, M. N. (1979). Numerical reconstruction of the quantal event at nicotinic synapses. Biophysical Journal, 27, 145–164.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, T. (1996). Cellular biophysics. Cambridge: MIT Press.

    Google Scholar 

  • Zhao, J., Dai, W., & Niu, T. (2007). Fourth-order compact schemes of a heat conduction problem with Neumann boundary conditions. Numerical Methods of Partial Differential Equations, 23, 949–959.

    Article  Google Scholar 

  • Zhao, J., Dai, W., & Zhang, S. (2008). 4th-order compact schemes for solving multidimensional heat conduction problems with Neumann boundary conditions. Numerical Methods of Partial Differential Equations, 24, 165–178.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhong Dai.

Additional information

Action Editor: Gaute T. Einevoll

Appendix

Appendix

1.1 Finite difference scheme for Neumann boundary condition

To obtain a new finite difference scheme without discretizing the Neumann boundary condition, Eq. (9a), we first design a mesh, where the distance between the actual left boundary and z 1 is assumed to be θ 1Δz, and the distance between the actual right boundary and z K is θ 2Δz, as shown in Fig. 4(c). For simplicity, we denote (A)(r, Φ, z, t) and Δz as A(z, t) and h, respectively, and then express the finite difference approximation of \(\frac{\partial ^{2}A(z,t)}{ \partial z^{2}}\) at z 1, which is the grid point next to the left boundary, as follows:

$$ \begin{array}{rll} b\frac{\partial ^{2}A(z_{1},t)}{\partial z^{2}}&=&\frac{a}{h^{2} }\big[A(z_{2},t)-A(z_{1},t)\big]\\ &&-\,\frac{1}{h}\frac{\partial A\left( z_{1}-\theta _{1}h,t\right) }{\partial z}, \label{eqA1} \end{array}$$
(18)

where a, b, θ 1 are constants to be determined. If Eq. (18) is rewritten as follows:

$$\begin{array}{rl} \label{eqA1'} &b\frac{\partial ^{2}A(z_{1},t)}{\partial z^{2}}+\frac{1}{h} \frac{\partial A\left( z_{1}-\theta _{1}h,t\right) }{\partial z}\\ &=\frac{a}{ h^{2}}\left[A(z_{2},t)-A(z_{1},t)\right], \end{array} $$
(18')

one may see that the above equation is an improvement of the combined compact finite difference method (where the first and second-order derivatives are included (Chu and Fan 1998; Zhao et al. 2007, 2008) by introducing the parameter θ 1 in order to raise the order of accuracy. The first-order derivative is kept in Eq. (18) so that the Neumann boundary condition can be applied directly without discretizing. Expanding each term of Eq. (18) into Taylor series at z 1, we obtain the right-hand-side (RHS) result of Eq. (18) as follows:

$$ \begin{array}{rll} \text{RHS} &=&\frac{a}{h^{2}}\left[hA_{z}(z_{1},t)+\frac{h^{2}}{2}A_{zz}(z_{1},t)+ \frac{h^{3}}{6}A_{z^{3}}(z_{1},t)\right] \\ &&-\frac{1}{h}\!\left[\!A_{z}(z_{1},t){\kern-1pt} -{\kern-1pt} \theta _{1}hA_{zz}(z_{1},t){\kern-1pt} +{\kern-2pt} \,\frac{\theta _{1}^{2}h^{2}}{2}A_{z^{3}}(z_{1},t)\!\right] \\ &&+\,O\left(h^{2}\right) \\ &=&\frac{1}{h}\left[ a-1\right] A_{z}(z_{1},t) \\ &&+\,\left[\frac{a}{2}+\theta _{1}\right]A_{zz}(z_{1},t)+\frac{h}{2}\left[\frac{a}{3}-\theta _{1}^{2} \right]A_{z^{3}}(z_{1},t) \\ &&+O\left(h^{2}\right). \label{eqA2} \end{array}$$
(19)

Matching both sides gives

$$ a=1,\text{}b=\frac{1}{2}+\frac{\sqrt{3}}{3},\text{}\theta _{1}=\frac{\sqrt{3}}{3}. \label{eqA3} $$
(20)

Thus, substituting the values of a, b, θ 1 in Eq. (20) into Eq. (18) and dropping the truncation error O(h 2), we obtain a second-order finite difference approximation for \(\frac{\partial ^{2}A}{\partial z^{2}}\) at z 1 as

$$ \begin{array}{rll} \frac{\partial ^{2}A(z_{1},t)}{\partial z^{2}}&\approx& \frac{a }{bh^{2}}\left[A(z_{2},t)-A(z_{1},t)\right]\\ &&-\,\frac{1}{bh}\frac{\partial A\left( z_{1}-\theta _{1}h,t\right) }{\partial z}. \label{eqA4} \end{array}$$
(21)

Symmetrically, we can express the finite difference approximation of \(\frac{ \partial ^{2}A(z,t)}{\partial z^{2}}\) at z K , which is the grid point next to the right boundary, as

$$ \begin{array}{rll} b^{*}\frac{\partial ^{2}A(z_{K},t)}{\partial z^{2}}&=&\frac{1}{h}\frac{ \partial A\left( z_{K}+\theta _{2}h,t\right) }{\partial z}\\ &&-\,\frac{a^{*}}{h^{2} }\left[A(z_{K},t)-A(z_{K-1},t)\right], \label{eqA5} \end{array}$$
(22)

where \(a^{*},b^{*},\theta _{2}\) are constants to be determined. Again, matching both sides in Taylor series gives

$$ a^{*}=1,\text{}b^{*}=\frac{1}{2}+\frac{\sqrt{3}}{3},\text{ }\theta _{2}=\frac{\sqrt{3}}{3}, \label{eqA6} $$
(23)

and hence a second-order finite difference approximation at z K for the right boundary can be obtained as

$$ \begin{array}{rll} \frac{\partial ^{2}A(z_{K},t)}{\partial z^{2}}&\approx& \frac{1}{b^{*}h}\frac{ \partial A\left( z_{K}+\theta _{2}h,t\right) }{\partial z}\\ &&-\,\frac{a^{*}}{ b^{*}h^{2}}\left[A(z_{K},t)-A(z_{K-1},t)\right]. \label{eqA7} \end{array}$$
(24)

If the number of interior grid points K is given, then the grid size and the coordinates of the grid points can be determined as follows:

$$ \begin{array}{rll} h&=&\frac{L}{K+\theta _{1}+\theta _{2}-1},\\ z_{k}&=&(k-1+\theta _{1})h,\text{}k=1,\cdots ,K. \label{eqA8} \end{array}$$
(25)

Based on the Neumann boundary condition, Eqs. (9a), (21) and (24) can be simplified to

$$ \frac{\partial ^{2}A(z_{1},t)}{\partial z^{2}}\approx \frac{a }{bh^{2}}\left[A(z_{2},t)-A(z_{1},t)\right], \label{eqA9a} $$
(26a)
$$ \frac{\partial ^{2}A(z_{K},t)}{\partial z^{2}}\approx -\frac{a^{*}}{ b^{*}h^{2}}\left[A(z_{K},t)-A(z_{K-1},t)\right]. \label{eqA9b} $$
(26b)

1.2 Stability of the finite difference scheme

To analyze the stability of the finite difference scheme, Eqs. (13a)–(13c), with the initial and boundary conditions, Eqs. (14a)–(16b), we first define following finite difference operators:

$$ \begin{array}{rll} P_{r}\left[A_{i,j,k}^{n}\right]&\equiv& r_{i+\frac{1}{2}}\frac{ A_{i+1,j,k}^{n}{\kern-1pt} -{\kern-1pt} A_{i,j,k}^{n}}{\left( \Delta r\right) ^{2}}{\kern-.5pt} \!-\!r_{i-\frac{1}{2}} \frac{A_{i,j,k}^{n}-A_{i-1,j,k}^{n}}{\left( \Delta r\right) ^{2}},\\[4pt] P_{\phi}\left[A_{i,j,k}^{n}\right]&\equiv& \frac{ A_{i,j+1,k}^{n}-2A_{i,j,k}^{n}+A_{i,j-1,k}^{n}}{\left( \Delta \phi \right) ^{2}},\\[4pt] P_{z}\left[A_{i,j,k}^{n}\right]&\equiv& \frac{ A_{i,j,k+1}^{n}-2A_{i,j,k}^{n}+A_{i,j,k-1}^{n}}{\left( \Delta z\right) ^{2}},\\[4pt] \nabla _{\bar{r}}A_{i,j,k}^{n}&\equiv& \frac{A_{i,j,k}^{n}-A_{i-1,j,k}^{n}}{ \Delta r},\\[4pt] \nabla_{\bar{\phi}}A_{i,j,k}^{n}&\equiv& \frac{ A_{i,j,k}^{n}-A_{i,j-1,k}^{n}}{\Delta \phi },\\[4pt] \nabla _{\bar{z}}A_{i,j,k}^{n}&\equiv& \frac{A_{i,j,k}^{n}-A_{i,j,k-1}^{n}}{ \Delta z},\\[4pt] W_{t}\left[A_{i,j,k}^{n}\right]&\equiv&\frac{ A_{i,j,k}^{n+1}+A_{i,j,k}^{n}}{2}. \end{array} $$

We assume that the values of (R), (AR), (A 2 R), \((A_{2}R^{\rm open})\) at time step n + 1 have already been known since they are calculated ahead based on the Runge–Kutta method. As such, Eqs. (13a)–(13c) can be simplified to, at interior points, k = 2, ⋯ ,K − 1,

$$ \begin{array}{rll} \frac{A_{i,j,k}^{n+1}\!-\! A_{i,j,k}^{n}}{\Delta t}\! &=& \! \frac{D_{r}}{r_{i}} P_{r}\left\{\! W_{t}\big[A_{i,j,k}^{n}\big]\!\right\} \!+\! \frac{D_{\phi }}{r_{i}^{2}} P_{\phi }\left\{ W_{t}\big[A_{i,j,k}^{n}\big]\right\} \\ [4pt] &&+\,D_{z}P_{z}\left\{ W_{t}\big[A_{i,j,k}^{n}\big]\right\} \\ [4pt] &&-\,C_{i,j,k}^{\,n+\frac{1}{2}}\left(\frac{A_{i,j,k}^{n+1}+A_{i,j,k}^{n}}{2} \right){\kern-3pt} +{\kern-3pt} f_{i,j,k}^{\,n+\frac{1}{2}}, \label{eqA10a} \end{array}$$
(27a)

where 1 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1; at the location z 1,

$$\begin{array}{rll} \frac{A_{i,j,1}^{n+1}\!-\!A_{i,j,1}^{n}}{\Delta t} \!&=&\! \frac{D_{r}}{r_{i}} P_{r}\left\{ W_{t}\big[A_{i,j,1}^{n}\big]\right\} \!+\! \frac{D_{\phi }}{r_{i}^{2}} P_{\phi }\left\{ W_{t}\big[A_{i,j,1}^{n}\big]\right\} \\ &&+\,\frac{a}{b}\frac{D_{z}}{ \Delta z}\nabla _{\bar{z}}\left\{ W_{t}\big[A_{i,j,1}^{n}\big]\right\} \\ &&-\,C_{i,j,1}^{n+\frac{1}{2}}\left(\frac{A_{i,j,1}^{n+1}+A_{i,j,1}^{n}}{2} \right)+f_{i,j,1}^{n+\frac{1}{2}}, \label{eqA10b} \end{array}$$
(27b)

where \(a=1,b=\frac{1}{2}+\frac{\sqrt{3}}{3}\) and 1 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1; and at the location z K ,

$$ \begin{array}{rll} \frac{A_{i,j,K}^{n+1}\!-\!A_{i,j,K}^{n}}{\Delta t} \!&=&\! \frac{D_{r}}{r_{i}} P_{r}\!\left\{\! W_{t}\big[\!A_{i,j,K}^{n}\big]\!\right\} \!+\! \frac{D_{\phi }}{r_{i}^{2}} P_{\phi }\!\left\{\! W_{t}\big[A_{i,j,K}^{n}\big]\!\right\} \\ &&-\,\frac{a^{*}}{b^{*}}\frac{D_{z} }{\Delta z}\nabla _{\bar{z}}\left\{ W_{t}\big[A_{i,j,K}^{n}\big]\right\} \\ &&-C_{i,j,K}^{n+\frac{1}{2}}\left(\frac{A_{i,j,K}^{n+1}+A_{i,j,K}^{n}}{2} \right)+f_{i,j,K}^{n+\frac{1}{2}} \\ \label{eqA10c} \end{array}$$
(27c)

where \(a^{*}=1,b^{*}=\frac{1}{2}+\frac{\sqrt{3}}{3}\) and 1 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1. Here, \(C_{i,j,k}^{n+\frac{1}{2}}\) and \(f_{i,j,k}^{n+ \frac{1}{2}},\) which are from the values of species (R, AR, A 2 R, \( A_{2}R^{\rm open})\), are considered to be a positive coefficient and a source term, respectively.

Theorem 1

The finite difference scheme, Eqs. (27a)–(27c), with the initial and boundary conditions, Eqs. (14a)–(14b), is unconditionally stable with respect to the initial condition and source term.

Proof

Assume that A 1 and A 2 are two solutions obtained based on Eqs. (27a)–(27c) with same boundary conditions but different initial conditions and source terms f 1 and f 2, respectively. Letting A = A 1 − A 2 and f = f 1 − f 2, then A and f satisfy Eqs. (27a)–(27c) with the boundary condition

$$ \begin{array}{rll} A_{i,J,k}^{n}&=&A_{i,0,k}^{n},A_{i,-1,k}^{n}=A_{i,J-1,k}^{n},\\ A_{I,j,k}^{n}&=&0,A_{0,j,k}^{n}=\frac{\Delta \phi }{2\pi }\displaystyle\sum\limits_{j=0}^{J-1}A_{1,j,k}^{n}, \label{eqA11} \end{array}$$
(28)

for 0 ≤ j ≤ J − 1, 1 ≤ k ≤ K.

We then multiply Eq. (27a) by 2r i ΔzΔt \( [A_{i,j,k}^{n+1}+A_{i,j,k}^{n}]\) for interior points, k = 2, ⋯ ,K − 1; multiply Eq. (27b) by \(2\frac{b}{a}r_{i}\Delta z\Delta t\) \( [A_{i,j,1}^{n+1}+A_{i,j,1}^{n}]\); multiply Eq. (27c) by \(2\frac{b^{*}}{a^{*}}\) r i ΔzΔt \([A_{i,j,K}^{n+1}+A_{i,j,K}^{n}]\); and then sum them over k, where 1 ≤ k ≤ K. This gives

$$ \begin{array}{rll} &&\Delta zr_{i}\left\{\!\frac{b}{a} \!\left(\!\left[\!A_{i,j,1}^{n+1}\right]^{2}\!\!-\!\left[\!A_{i,j,1}^{n}\right]^{2}\right)\!+\!\sum \limits_{k=2}^{K-1}\!\left(\!\left[\!A_{i,j,k}^{n+1}\right]^{2}\!\!-\!\left[\!A_{i,j,k}^{n}\right]^{2}\right)\right.\\ &&{\kern24pt} \left.+\,\frac{b^{*}}{ a^{*}}\left(\left[\!A_{i,j,K}^{n+1}\right]^{2}\!-\!\left[\!A_{i,j,K}^{n}\right]^{2}\right)\right\} \\ &&=2\Delta z\Delta tD_{r}\left\{\frac{b}{a}P_{r}\left\{ W_{t}\big[A_{i,j,1}^{n}\big]\right\} \left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right. \\ &&{\kern6pt} +\sum\limits_{k=2}^{K-1}P_{r}\left\{ W_{t}\big[A_{i,j,k}^{n}\big]\right\} \left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \\ &&{\kern6pt} +\left.\frac{b^{*}}{a^{*}}P_{r}\left\{ W_{t}\big[A_{i,j,K}^{n}\big]\right\} \left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\right\} \\ &&{\kern6pt} +\,2\Delta z\Delta t\frac{D_{\phi }}{r_{i}}\left\{\frac{b}{a}P_{\phi }\left\{ W_{t}\left[A_{i,j,1}^{n}\right]\right\} \left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right.\\ &&{\kern6pt}+\left.\sum\limits_{k=2}^{K-1}P_{\phi }\left\{ W_{t}[A_{i,j,k}^{n}]\right\} \left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\right. \\ &&{\kern6pt}+\left.\frac{b^{*}}{a^{*}}P_{\phi }\left\{ W_{t}\left[A_{i,j,K}^{n}\right]\right\} \left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\right\} \\ &&{\kern6pt} +\,\Delta tr_{i}D_{z}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\nabla _{\bar{z} }\left[A_{i,j,2}^{n+1}+A_{i,j,2}^{n}\right]\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right.\\ &&{\kern52pt} \!+\,2\Delta z\sum\limits_{k=2}^{K-1}P_{z}\!\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\}\left[A_{i,j,k}^{n+1}\!+\!A_{i,j,k}^{n}\right] \!\!\!\!\!\!\!\!\! \\ &&{\kern52pt} -\left.\nabla _{\bar{z} }\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ &&{\kern6pt} -\,\Delta z\Delta tr_{i}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a}C_{i,j,1}^{n+\frac{1}{2} }\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]^{2}\right.\\ &&{\kern52pt} +\,\sum\limits_{k=2}^{K-1}C_{i,j,k}^{n+ \frac{1}{2}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]^{2}\\ &&{\kern52pt} +\left.\frac{b^{*}}{a^{*}} C_{i,j,K}^{n+\frac{1}{2}}\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]^{2}\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ &&{\kern6pt} +\,2\Delta z\Delta tr_{i}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a}f_{i,j,1}^{n+\frac{1}{2} }\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right.\\ &&{\kern58pt} +\,\sum\limits_{k=2}^{K-1}f_{i,j,k}^{n+\frac{1}{2}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \\ &&{\kern58pt} +\left.\frac{b^{*}}{a^{*}}f_{i,j,K}^{n+\frac{1}{2} }\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right\}. \label{eqA12} \end{array}$$
(29)

Since the third term on the RHS of Eq. (29) can be simplified to

$$ \begin{array}{rll} &&{\kern-6pt} 2\Delta z\sum\limits_{k=2}^{K-1}P_{z}\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\} \left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\\ &&{\kern12pt}+\nabla_{\bar{z}}\left[A_{i,j,2}^{n+1}+A_{i,j,2}^{n}\right]\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right] \\ &&{\kern12pt}-\nabla _{\bar{z}}\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right] \\ &&=\sum\limits_{k=2}^{K-1}\left\{\nabla _{\bar{z} }\left[A_{i,j,k+1}^{n+1}+A_{i,j,k+1}^{n}\right]-\nabla _{\bar{z}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\right\}\\ &&{\kern6pt} \times\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] +\nabla _{\bar{z} }\left[A_{i,j,2}^{n+1}+A_{i,j,2}^{n}\right]\\ [4pt] &&{\kern6pt}\times \left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]-\nabla _{\bar{z}}\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\\ [5pt] &&{\kern6pt} \times\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right] \\ [5pt] &&=\sum\limits_{k=3}^{K}\nabla _{\bar{z} }\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\left[A_{i,j,k-1}^{n+1}+A_{i,j,k-1}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\\ [4pt] &&{\kern15pt} -\sum\limits_{k=2}^{K-1}\nabla _{\bar{z}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \\ [5pt] &&{\kern6pt} +\,\nabla _{\bar{z} }\left[A_{i,j,2}^{n+1}+A_{i,j,2}^{n}\right]\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\\ [5pt] &&{\kern6pt} -\,\nabla _{\bar{z}}\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right] \\ [5pt] &&=-\Delta z\sum\limits_{k=2}^{K}\nabla _{\bar{z} }\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]^{2}, \label{eqA13} \end{array}$$
(30)

and \(C_{i,j,k}^{n+\frac{1}{2}}[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}]^{2}\geq 0\), one may drop the third and fourth terms on the RHS of Eq. (29) and simplify it to

$$ \begin{array}{rll} &&{\kern-6pt} 2\Delta zr_{i}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a} \left(\left[A_{i,j,1}^{n+1}\right]^{2}-\left[A_{i,j,1}^{n}\right]^{2}\right)\right.\\ &&{\kern24pt} +\,\sum\limits_{k=2}^{K-1}\left(\left[A_{i,j,k}^{n+1}\right]^{2}-\left[A_{i,j,k}^{n}\right]^{2}\right)\\ [4pt] &&{\kern24pt} +\left.\frac{b^{*}}{a^{*}}\left(\left[A_{i,j,K}^{n+1}\right]^{2}-\left[A_{i,j,K}^{n}\right]^{2}\right)\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ [4pt] &&\leq 2\Delta z\Delta tD_{r}\left\{\vphantom{\sum\limits_{k=2}^{K-1}P_{r}}\frac{b}{a}P_{r}\left\{ W_{t}[A_{i,j,1}^{n}]\right\} \left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right.\\ &&{\kern56pt} +\,\sum\limits_{k=2}^{K-1}P_{r}\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\} \left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \\ &&{\kern56pt} +\left.\frac{b^{*}}{a^{*}}P_{r}\left\{ W_{t}[A_{i,j,K}^{n}]\right\} \left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}P_{r}}\right\} \\ &&{\kern6pt}+2\Delta z\Delta t\frac{D_{\phi }}{r_{i}}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a}P_{\phi }\left\{W_{t}\left[A_{i,j,1}^{n}\right]\right\} \left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right.\\ &&{\kern66pt} +\,\sum\limits_{k=2}^{K-1}P_{\phi }\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\} \left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \!\!\!\!\!\!\! \\ &&{\kern66pt}+\frac{b^{*}}{a^{*}}P_{\phi }\left\{ W_{t}\left[A_{i,j,K}^{n}\right]\right\}\\ &&{\kern66pt}\times\left. \left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ &&{\kern6pt}+\,2\Delta z\Delta tr_{i}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a}f_{i,j,1}^{n+\frac{1}{2} }\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right. \\ &&{ \kern58pt} +\,\sum\limits_{k=2}^{K-1}f_{i,j,k}^{n+\frac{1 }{2}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \\ &&{\kern58pt}+\left.\frac{b^{*}}{a^{*}}f_{i,j,K}^{n+\frac{1}{2} }\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right\}. \label{eqA14} \end{array}$$
(31)

Summing Eq. (3131) over i and j, where 1 ≤ i ≤ I − 1 and 0 ≤ j ≤ J − 1, and multiplying the result by ΔrΔΦ, we obtain

$$ \begin{array}{rll} &&{\kern-6pt} 2\Delta r\Delta \phi \Delta z\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}r_{i}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a} \left(\left[A_{i,j,1}^{n+1}\right]^{2}-\left[A_{i,j,1}^{n}\right]^{2}\right)\right.\\ &&{\kern82pt} +\,\sum\limits_{k=2}^{K-1}\left(\left[A_{i,j,k}^{n+1}\right]^{2}-\left[A_{i,j,k}^{n}\right]^{2}\right) \\ &&{\kern82pt} +\left.\frac{b^{*}}{a^{*}}\left(\left[A_{i,j,K}^{n+1}\right]^{2}-\left[A_{i,j,K}^{n}\right]^{2}\right)\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ &&\leq 2\Delta r\Delta \phi \Delta z\Delta tD_{r}\\ &&{\kern6pt} \times\,\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}\left\{\frac{b}{a} P_{r}\left\{ W_{t}\left[A_{i,j,1}^{n}\right]\right\} \left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right. \\ &&{\kern54pt} +\sum\limits_{k=2}^{K-1}P_{r}\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\\ &&{\kern54pt} +\left.\frac{b^{*}}{a^{*}}P_{r}\left\{ W_{t}\left[A_{i,j,K}^{n}\right]\right\} \left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ &&{\kern6pt}+2\Delta r\Delta \phi \Delta z\Delta t\\ &&{\kern6pt} \times\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}\frac{D_{\phi }}{r_{i}}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a}P_{\phi }\left\{ W_{t}\left[A_{i,j,1}^{n}\right]\right\} \left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right] \right. \\ &&{\kern65pt}+\,\sum\limits_{k=2}^{K-1}P_{\phi }\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\!\!\!\!\!\!\!\!\!\!\!\!\\ &&{\kern65pt} +\,\frac{b^{*}}{a^{*}}P_{\phi }\left\{W_{t}\left[A_{i,j,K}^{n}\right]\right\} \\ &&{\kern65pt}\times\left. \left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ &&{\kern6pt}+\,2\Delta r\Delta \phi \Delta z\Delta t\\ &&{\kern6pt} \times\,\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}r_{i}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a}f_{i,j,1}^{n+\frac{1}{2}}\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right.\\ &&{\kern60pt} +\,\sum\limits_{k=2}^{K-1}f_{i,j,k}^{n+\frac{1}{2}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \\ &&{\kern60pt}+\left.\frac{b^{*}}{a^{*}}f_{i,j,K}^{n+\frac{1}{2} }\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum\limits_{k=2}^{K-1}}\right\}. \label{eqA15} \end{array}$$
(32)

Using a similar argument in Eq. (30) together with Eq. (28), we have

$$ \begin{array}{rrl} &&{\kern-6pt} 2\Delta r\sum\limits_{j=0}^{J-1}\sum\limits_{i=1}^{I-1}P_{r}\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\} \left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\\ &&=-\Delta r\sum\limits_{j=0}^{J-1}\sum\limits_{i=1}^{I}r_{i-\frac{1}{2}}\nabla _{\bar{r }}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]^{2}, \label{eqA16a} \end{array}$$
(33a)
$$ \begin{array}{rll} &&{\kern-6pt} 2\Delta \phi \sum\limits_{j=0}^{J-1}P_{\phi }\left\{ W_{t}\left[A_{i,j,k}^{n}\right]\right\} \left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\\ &&=-\Delta \phi \sum\limits_{j=0}^{J-1}\nabla _{\bar{\phi} }\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]^{2}, \label{eqA16b} \end{array}$$
(33b)

for any 1 ≤ i ≤ I − 1 and 1 ≤ k ≤ K. Substituting Eqs. (33a) and (33b) into Eq. (32), we may drop the first two terms on the RHS of Eq. (32) and simplify it to

$$\begin{array}{rrl} &&{\kern-6pt} 2\Delta r\Delta \phi \Delta z\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}r_{i}\left\{\vphantom{\sum\limits_{k=2}^{K-1}}\frac{b}{a} \left(\left[A_{i,j,1}^{n+1}\right]^{2}-\left[A_{i,j,1}^{n}\right]^{2}\right)\right.\\ &&{\kern80pt} +\,\sum\limits_{k=2}^{K-1}\left(\left[A_{i,j,k}^{n+1}\right]^{2}-\left[A_{i,j,k}^{n}\right]^{2}\right) \\ &&{\kern80pt} +\left.\frac{b^{*}}{a^{*}}\left(\left[A_{i,j,K}^{n+1}\right]^{2}-\left[A_{i,j,K}^{n}\right]^{2}\right)\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \\ &&\leq 2\Delta r\Delta \phi \Delta z\Delta t\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}\left\{\vphantom{\sum \limits_{k=2}^{K-1}}\frac{b}{a}f_{i,j,1}^{n+ \frac{1}{2}}\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\right.\\ &&{\kern100pt} +\sum \limits_{k=2}^{K-1}f_{i,j,k}^{n+\frac{1}{2}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right] \\ &&{\kern100pt} +\left.\frac{b^{*}}{a^{*}}f_{i,j,K}^{n+\frac{1}{2} }\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\vphantom{\sum \limits_{k=2}^{K-1}}\right\}. \\ \label{eqA17} \end{array}$$
(34)

Using Cauchy–Schwartz’s inequality (\(2xy\leq \varepsilon x^{2}+\frac{1}{ \varepsilon }y^{2})\) and (x + y)2 ≤ 2x 2 + 2y 2, we have

$$ \begin{array}{rll} &&{\kern-6pt} 2f_{i,j,1}^{n+\frac{1}{2}}\left[A_{i,j,1}^{n+1}+A_{i,j,1}^{n}\right]\\ &&\leq \frac{a}{b}\left[ f_{i,j,1}^{n+\frac{1}{2}}\right]^{2} +2\frac{b}{a}\left\{ \left[A_{i,j,1}^{n+1}\right]^{2}+\left[A_{i,j,1}^{n}\right]^{2}\right\} , \label{eqA18a} \end{array}$$
(35a)
$$ \begin{array}{rll} &&{\kern-6pt}2f_{i,j,K}^{n+\frac{1}{2}}\left[A_{i,j,K}^{n+1}+A_{i,j,K}^{n}\right]\\ &&\leq \frac{a^{*}}{ b^{*}}\left[f_{i,j,K}^{n+\frac{1}{2}}\right]^{2}+2\frac{b^{*}}{a^{*}}\left\{ \left[A_{i,j,K}^{n+1}\right]^{2}+\left[A_{i,j,K}^{n}\right]^{2}\right\} , \label{eqA18b} \end{array}$$
(35b)
$$ \begin{array}{rll} &&{\kern-6pt}2f_{i,j,k}^{n+\frac{1}{2}}\left[A_{i,j,k}^{n+1}+A_{i,j,k}^{n}\right]\\ [4pt] &&\leq \left[f_{i,j,k}^{n+ \frac{1}{2}}\right]^{2}+2\left\{ \left[A_{i,j,k}^{n+1}\right]^{2}+\left[A_{i,j,k}^{n}\right]^{2}\right\} , \label{eqA18c} \end{array}$$
(35c)

for any 2 ≤ k ≤ K − 1. Substituting Eqs. (35a)–(35c) into Eq. (34) and then denoting

$$\begin{array}{rll} A\left( n\right) &=&2\Delta r\Delta \phi \Delta z\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}r_{i}\left\{\frac{b}{a}\left[A_{i,j,1}^{n+1}\right]^{2}\!+\!\sum\limits_{k=2}^{K-1}\left[A_{i,j,k}^{n+1}\right]^{2}\right.\!\!\!\!\!\!\!\\ &&{\kern88pt} +\left.\frac{b^{*} }{a^{*}}\left[A_{i,j,K}^{n+1}\right]^{2}\vphantom{\sum\limits_{k=2}^{K-1}}\right\} \label{eqA19a} \end{array}$$
(36a)

and

$$\begin{array}{rll} F\left( n\right) &=&\Delta r\Delta \phi \Delta z\sum\limits_{i=1}^{I-1}\sum\limits_{j=0}^{J-1}r_{i}\left\{\frac{b}{a}\left[ f_{i,j,1}^{n+\frac{1}{2}}\right]^{2}+\sum\limits_{k=2}^{K-1}\left[f_{i,j,k}^{n+\frac{1}{2}}\right]^{2}\right.\\ &&{\kern84pt} +\left.\frac{b^{*}}{a^{*}}\left[f_{i,j,K}^{n+\frac{1}{2}}\right]^{2}\vphantom{\sum\limits_{k=2}^{K-1}}\right\}, \label{eqA19b} \end{array}$$
(36b)

we can further simplify Eq. (34) to

$$ \begin{array}{rll} &&{\kern-6pt} A(n+1)\\ &&\leq \frac{1+\Delta t}{1-\Delta t}A\left( n\right) +\frac{\Delta t}{1-\Delta t}F\left( n\right) \\ &&\leq \frac{1+\Delta t}{1-\Delta t}\left[\frac{1+\Delta t}{1-\Delta t}A\left( n-1\right) +\frac{\Delta t}{1-\Delta t}F\left(n-1\right) \right]\\ &&{\kern6pt} +\,\frac{\Delta t}{1-\Delta t}F\left( n\right) \\ &&\leq \left(\frac{1+\Delta t}{1-\Delta t}\right)^{n+1}A\left( 0\right)+\frac{ \Delta t}{1-\Delta t} \\ &&{\kern6pt} \times\left[1+\frac{1+\Delta t}{1-\Delta t}+\cdots +\left(\frac{ 1+\Delta t}{1-\Delta t}\right)^{n}\right]\max_{0\leq n_{1}\leq n}F\left( n_{1}\right) \\ &&\leq \left(\frac{1+\Delta t}{1-\Delta t}\right)^{n+1}\left[A\left( 0\right) +\max_{0\leq n_{1}\leq n}F\left( n_{1}\right) \right]. \label{eqA20} \end{array}$$
(37)

Using inequalities \(\left( 1+\varepsilon \right) ^{n}\leq e^{n\varepsilon },\varepsilon >0\), and ( 1 − ε)  − 1 ≤ \( e^{2\varepsilon },0<\varepsilon <\frac{1}{2},\) we obtain

$$ \begin{array}{rll} A\left( n+1\right) &\leq & e^{3n\Delta t}\left[A\left( 0\right) +\max_{0\leq n_{1}\leq n}F\left( n_{1}\right) \right]\\ &\leq& e^{3t_{0}}\left[A\left(0\right) +\max_{0\leq n_{1}\leq n}F\left( n_{1}\right) \right], \label{eqA21} \end{array}$$
(38)

for any \(0\leq \left( n+1\right) \Delta t\leq t_{0}\), implying that the scheme is unconditionally stable with respect to the initial condition and source term.□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaliq, A., Jenkins, F., DeCoster, M. et al. A new 3D mass diffusion–reaction model in the neuromuscular junction. J Comput Neurosci 30, 729–745 (2011). https://doi.org/10.1007/s10827-010-0289-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0289-5

Keywords

Navigation