Skip to main content
Log in

Synchrony with shunting inhibition in a feedforward inhibitory network

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recent experiments have shown that GABAA receptor mediated inhibition in adult hippocampus is shunting rather than hyperpolarizing. Simulation studies of realistic interneuron networks with strong shunting inhibition have been demonstrated to exhibit robust gamma band (20–80 Hz) synchrony in the presence of heterogeneity in the intrinsic firing rates of individual neurons in the network. In order to begin to understand how shunting can contribute to network synchrony in the presence of heterogeneity, we develop a general theoretical framework using spike time response curves (STRC’s) to study patterns of synchrony in a simple network of two unidirectionally coupled interneurons (UCI network) interacting through a shunting synapse in the presence of heterogeneity. We derive an approximate discrete map to analyze the dynamics of synchronous states in the UCI network by taking into account the nonlinear contributions of the higher order STRC terms. We show how the approximate discrete map can be used to successfully predict the domain of synchronous 1:1 phase locked state in the UCI network. The discrete map also allows us to determine the conditions under which the two interneurons can exhibit in-phase synchrony. We conclude by demonstrating how the information from the study of the discrete map for the dynamics of the UCI network can give us valuable insight into the degree of synchrony in a larger feed-forward network of heterogeneous interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abarbanel, H., Gibb, L., Huerta, R., & Rabinovich, M. (2003) Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214–226.

    Article  PubMed  Google Scholar 

  • Acker, C., Kopell, N., & White, J. (2004) Synchronization of strongly coupled excitatory neurons:relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.

    Article  Google Scholar 

  • Aoki, F. (1999) Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clinical Neurophysiology, 110, 524–537.

    Article  CAS  PubMed  Google Scholar 

  • Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J., et al. (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences, 99, 13,222–13,227.

    Article  CAS  Google Scholar 

  • Bartos, M., Vida, I., & Jonas, P. (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8, 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Baudry, C., & Bertrand, O. (1999) Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151–161.

    Article  Google Scholar 

  • Chow, C., White, J., Ritt, J., & Kopell, N. (1998) Frequency control in synchronized networks of inhibitory neurons. Journal of Computational Neuroscience, 5, 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Cui, J., Canavier, C., & Butera, R. (2009) Functional phase response curves: A method for understanding synchronization of adapting neurons. Journal of Neurophysiology, 102, 387–398.

    Article  PubMed  Google Scholar 

  • Dudek, F., & Shao, L. (2004) Mossy fiber sprouting and recurrent excitation: Direct electrophysiological evidence and potential implications. Epilepsy Currents, 4, 184–187.

    Article  PubMed  Google Scholar 

  • Engel, A., & Singer, W. (2001) Temporal binding and the neural correlated of sensory awareness. Trends in Cognitive Sciences, 5, 16–25.

    Article  PubMed  Google Scholar 

  • Ermentrout, B. (1996) Type 1 membranes, phase resetting curves and synchrony. Neural Computation, 8, 979–1001.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, B., & Kopell, N. (1990) Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50, 125–146.

    Article  Google Scholar 

  • Ermentrout, B., Pascal, M., & Gutkin, B. (2001) The effect of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, U., Pawelzik, K., & Geisel, T. (1995) Synchronization induced by temporal delays in pulse-coupled oscillators. Physical Review Letters, 74, 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  • Fisahn, A., Pike, F., Buhl, E., & Paulsen, O. (1998) Cholinergic induction of network oscillations at 40 hz in the hippocampus in vitro. Nature, 394, 186–189.

    Article  CAS  PubMed  Google Scholar 

  • Gruber, T., Keil, A., & Muller, M. (2001) Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human eeg. Neuroscience Letters, 316, 29–32.

    Article  CAS  PubMed  Google Scholar 

  • Gruber, T., Muller, M., & Keil, A. (2002) Modulation of induced gamma band responses in a perceptual learning task in the human eeg. Journal of Cognitive Neuroscience, 14, 732–744.

    Article  PubMed  Google Scholar 

  • Gutkin, B., Ermentrout, G., & Reyes, A. (2004) Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.

    Article  Google Scholar 

  • Jeong, H., & Gutkin, B. (2007) Synchrony of neuronal oscillations controlled by gabaergic reversal potentials. Neural Computation, 19, 706–729.

    Article  PubMed  Google Scholar 

  • Kurths, J., Pikovsky, A., & Rosenblum, M. (2001) Synchronization, a universal concept in non-linear science. Cambridge University Press.

  • LeBeau, F., Towers, S., Traub, R., Whittington, M., & Buhl, E. (2002) Fast network oscillations induced by potassium transients in the rat hippocampus in vitro. Journal of Physiology, 542, 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Mann, E., Suckling, J., Hajos, N., Greenfield, S., & Paulsen, O. (2005) Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron, 45, 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Maran, S., & Canavier, C. (2008) Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. Journal of Computational Neuroscience, 24, 37–55.

    Article  PubMed  Google Scholar 

  • Mima, T., Oluwatimilehin, T., Hiraoka, T., & Hallett, M. (2001) Transient interhemispheric neuronal synchrony correlates with object recognition. The Journal of Neuroscience, 21, 3942–3948.

    CAS  PubMed  Google Scholar 

  • Murray, J. (1993) Mathematical biology. Springer Verlag Berlin.

    Book  Google Scholar 

  • Oprisan, S., & Canavier, C. (2001) Stability analysis of ring of pulse coupled oscillators: The effect of phase resetting in the second cycle after the pulse is important at synchrony and for long pulses. Differential Equations and Dynamical Systems, 9, 243–258.

    Google Scholar 

  • Oprisan, S., & Prinz, A., Canavier, C. (2004) Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87, 2283–2298.

    Article  CAS  PubMed  Google Scholar 

  • Sejnowski, T. (1986) Open questions about computation in cerebral cortex. MIT Press, Cambridge.

    Google Scholar 

  • Strogatz, S. (2001) Nonlinear dynamics and chaos with application to physics, biology, chemistry and engineering. Westview Press.

  • Talathi, S., Hwang, D., & Ditto, W. (2008) Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. Journal of Computational Neuroscience, 25, 262–281.

    Article  PubMed  Google Scholar 

  • Talathi, S., Hwang, D., Miliotis, A., Carney, P., & Ditto, W. (2009) Predicting synchrony in heterogeneous pulse coupled oscillators. Physical Review E, 80, 021908.

    Article  Google Scholar 

  • vanVreeswijk, C., Abbott, L., & Ermentrout, B. (1994) When inhibition and not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.

    Article  CAS  Google Scholar 

  • Vida, I., Bartos, M., & Jonas, P. (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron, 49, 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., & Buzsaki, G. (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16, 6402–6413.

    CAS  PubMed  Google Scholar 

  • Wang, X., & Rinzel, J. (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.

    Article  Google Scholar 

  • White, A., Chow, C., Ritt, J., Trevino, C., & Kopell, N. (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.

    Article  CAS  PubMed  Google Scholar 

  • Whittington, M., Traub, R., & Jefferys, J. (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373, 612–615.

    Article  CAS  PubMed  Google Scholar 

  • Winfree, A. (2001) The geometry of biological time, 2 edn. NY: Springer Verlag.

    Google Scholar 

  • Wolf, F., & Geisel, T. (2008) Neurophysics:logic gates come to life. Natural Physique, 4, 905–906.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part through a grant from the Office of Naval Research (Grant Number N00014-02-1- 1019), the National Institute of Biomedical Imaging and Bioengineering through Collaborative Research in Computational Neuroscience (R01EB004752) and (EB007082) and the Wilder Center of Excellence for Epilepsy Research at the University of Florida. We acknowledge Dr P. Khargonekar, Dr H. Abarbanel and the anonymous reviewer’s for their valuable comments and suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Talathi.

Additional information

Action Editor: N. Kopell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talathi, S.S., Hwang, DU., Carney, P.R. et al. Synchrony with shunting inhibition in a feedforward inhibitory network. J Comput Neurosci 28, 305–321 (2010). https://doi.org/10.1007/s10827-009-0210-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0210-2

Keywords

Navigation