Skip to main content
Log in

Current and voltage based bit errors and their combined mitigation for the Kirchhoff-law–Johnson-noise secure key exchange

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We classify and analyze bit errors in the current measurement mode of the Kirchhoff-law–Johnson-noise (KLJN) key distribution. The error probability decays exponentially with increasing bit exchange period and fixed bandwidth, which is similar to the error probability decay in the voltage measurement mode. We also analyze the combination of voltage and current modes for error removal. In this combination method, the error probability is still an exponential function that decays with the duration of the bit exchange period, but it has superior fidelity to the former schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found. Trends Commun. Inf. Theory 5, 355–580 (2008). doi:10.1561/0100000036

    Article  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Breidbart, S., Wiesner, S.: Quantum cryptography, or unforgeable subway tokens. In: Advances in Cryptology: Proceedings of Crypto ’82, pp. 267–275. Plenum Press, Santa Barbara (1982)

    Google Scholar 

  3. Yuen, H.P.: On the foundations of quantum key distribution—reply to Renner and beyond (2012). arXiv:1210.2804

  4. Yuen, H.P.: Unconditional security in quantum key distributions (2012). arXiv:1205.5065v2

  5. Hirota, O.: Incompleteness and limit of quantum key distribution theory (2012). arXiv:1208.2106v2

  6. Renner, R.: Reply to recent skepticism about the foundations of quantum cryptography (2012). arXiv:1209.2423v1

  7. Yuen, H.P.: Security significance of the trace distance criterion in quantum key distribution (2012). arXiv:1109.2675v3

  8. Merali, Z.: Hackers blind quantum cryptographers. Nat. News (2009). doi:10.1038/news.2010.436

    Google Scholar 

  9. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011). doi:10.1038/ncomms1348

    Article  Google Scholar 

  10. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686–689 (2010). doi:10.1038/NPHOTON.2010.214

    Article  Google Scholar 

  11. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Scarani, V., Makarov, V., Kurtsiefer, C.: Experimentally faking the violation of Bell’s inequalities. Phys. Rev. Lett. 107, 170404 (2011). doi:10.1103/PhysRevLett.107.170404

    Article  Google Scholar 

  12. Makarov, V., Skaar, J.: Faked states attack using detector efficiency mismatch on SARG04, phasetime, DPSK, and Ekert protocols. Quantum Inf. Comput. 8, 622–635 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13, 013043 (2011). doi:10.1088/1367-2630/13/1/013043

    Article  Google Scholar 

  14. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Thermal blinding of gated detectors in quantum cryptography. Opt. Express 18, 27938–27954 (2010). doi:10.1364/OE.18.027938

    Article  Google Scholar 

  15. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011). doi:10.1103/PhysRevLett.107.110501

    Article  Google Scholar 

  16. Lydersen, L., Skaar, J., Makarov, V.: Tailored bright illumination attack on distributed-phase-reference protocols. J. Mod. Opt. 58, 680–685 (2011). doi:10.1080/09500340.2011.565889

    Article  Google Scholar 

  17. Lydersen, L., Akhlaghi, M.K., Majedi, A.H., Skaar, J., Makarov, V.: Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J. Phys. 13, 113042 (2011). doi:10.1088/1367-2630/13/11/113042

    Article  Google Scholar 

  18. Lydersen, L., Makarov, V., Skaar, J.: Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”. Appl. Phys. Lett. 99, 196101 (2011). doi:10.1063/1.3658806

    Article  Google Scholar 

  19. Sauge, S., Lydersen, L., Anisimov, A., Skaar, J., Makarov, V.: Controlling an actively-quenched single photon detector with bright light. Opt. Express 19, 23590–23600 (2011). doi:10.1364/OE.19.023590

    Article  Google Scholar 

  20. Lydersen, L., Jain, N., Wittmann, C., Maroy, O., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: Superlinear threshold detectors in quantum cryptography. Phys. Rev. Lett. 84, 032320 (2011). doi:10.1103/PhysRevA.84.032320

    Google Scholar 

  21. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Avoiding the blinding attack in QKD: reply (comment). Nat. Photonics 4, 800–801 (2010). doi:10.1038/nphoton.2010.278

    Article  Google Scholar 

  22. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009). doi:10.1088/1367-2630/11/6/065003

    Article  Google Scholar 

  23. Yuen, H.P.: Key generation: foundation and a new quantum approach. IEEE J. Sel. Top. Quantum Electron. 15, 1630–1645 (2009). doi:10.1109/JSTQE.2009.2025698

    Article  Google Scholar 

  24. Salih, H., Li, Z.H., Al-Amri, M., Zubairy, H.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 101, 170502 (2013). doi:10.1103/PhysRevLett.110.170502

    Article  Google Scholar 

  25. Kish, L.B.: Totally secure classical communication utilizing Johnson (-like) noise and Kirchhoff’s law. Phys. Lett. A 352, 178–182 (2006). doi:10.1016/j.physleta.2005.11.062

    Article  MATH  Google Scholar 

  26. Mingesz, R., Kish, L.B., Gingl, Z., Granqvist, C.G., Wen, H., Peper, F., Eubanks, T., Schmera, G.: Unconditional security by the laws of classical physics. Metrol. Meas. Syst. 20, 3–16 (2013). doi:10.2478/mms-2013-0001

    Google Scholar 

  27. Kish, L.B., Abbott, D., Granqvist, C.G.: Critical analysis of the Bennett–Riedel attack on secure cryptographic key distributions via the Kirchhoff-law–Johnson-noise scheme (2013). arXiv:1306.0058

  28. Kish, L.B.: Protection against the man in the middle attack for the Kirchhoff-loop Johnson (-like) -noise cipher and expansion by voltage-based security. Fluct. Noise Lett. 6, L57–L63 (2005). doi:10.1142/S0219477506003148

    Article  Google Scholar 

  29. Kish, L.B.: Enhanced secure key exchange systems based on the Johnson noise scheme. Metrol. Meas. Syst. 20, 191–204 (2013). doi:10.2478/mms-2013-0017

    Google Scholar 

  30. Mingesz, R., Gingl, Z., Kish, L.B.: Johnson (-like) -noise–Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Phys. Lett. A 372, 978–984 (2008). doi:10.1016/j.physleta.2007.07.086

    Article  MATH  Google Scholar 

  31. Saez, Y., Kish, L.B.: Errors and their mitigation at the Kirchhoff-law–Johnson-noise secure key exchange (2013). arXiv:1305.0126; arXiv:1305.4787v1

  32. Kish, L.B., Kwan, C.: Physical uncloneable function hardware keys utilizing Kirchhoff-law–Johnson-noise secure key exchange and noise-based logic (2013). arXiv:1305.0068; arXiv:1305.3248

  33. Kish, L.B., Saidi, O.: Unconditionally secure computers, algorithms and hardware. Fluct. Noise Lett. 8, L95–L98 (2008). doi:10.1142/S0219477508004362

    Article  Google Scholar 

  34. Gonzalez, E., Kish, L.B., Balog, R., Enjeti, P.: Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters. PLoS ONE 8, e70206 (2013). doi:10.1371/journal.pone.0070206

    Article  Google Scholar 

  35. Kish, L.B., Mingesz, R.: Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise. Fluct. Noise Lett. 6, C9–C21 (2006). doi:10.1142/S021947750600332X

    Article  Google Scholar 

  36. Kish, L.B., Peper, F.: Information networks secured by the laws of physics. IEICE Trans. Commun. 95-B, 1501–1507 (2012)

    Article  Google Scholar 

  37. Kish, L.B., Mingesz, R., Gingl, Z., Granqvist, C.G.: Spectra for the product of Gaussian noises. Metrol. Meas. Syst. 19, 653–658 (2012). doi:10.2478/v10178-012-0057-0

    Google Scholar 

  38. Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 282–332 (1944). http://archive.org/details/bstj23-3-282

    Article  MATH  MathSciNet  Google Scholar 

  39. Rychlik, I.: On some reliability applications of Rice’s formula for the intensity of level crossings. Extremes 3, 331–348 (2000). doi:10.1023/A:1017942408501

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Discussions with Elias Gonzalez are appreciated. Y. Saez is grateful to IFARHU/SENACYT for supporting her PhD studies at Texas A&M. R. Mingesz’s contribution is supported by the European Union and the European Social Fund. Project #TÁMOP-4.2.2.A-11/1/KONV-2012-0073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yessica Saez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saez, Y., Kish, L.B., Mingesz, R. et al. Current and voltage based bit errors and their combined mitigation for the Kirchhoff-law–Johnson-noise secure key exchange. J Comput Electron 13, 271–277 (2014). https://doi.org/10.1007/s10825-013-0515-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0515-2

Keywords

Navigation