Skip to main content
Log in

Impact of semiconductor/metal interfaces on contact resistance and operating speed of organic thin film transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The contact resistance of field effect transistors based on pentacene and parylene has been investigated by experimental and numerical analysis. The device simulation was performed using finite element two-dimensional drift-diffusion simulation taking into account field-dependent mobility, interface/bulk trap states and fixed charge density at the organic/insulator interface. The width-normalized contact resistance extracted from simulation which included an interface dipole layer between the gold source/drain electrodes and pentacene was 91 kΩcm. However, contact resistance extracted from the simulation, without consideration of interface dipole was 52.4 kΩcm, which is about half of the experimentally extracted 108 kΩcm. This indicates that interface dipoles are critical effects which degrade performances of organic field effect transistors by increasing the contact resistance. Using numerical calculations and circuit simulations, we have predicted a 1 MHz switching frequency for a 1 μm channel length transistor without dipole interface between gold and pentacene. The transistor with dipole interface is predicted, via the same methods, to exhibit an operating frequency of less than 0.5 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goettling, S., Diehm, B., Fruehauf, N.: J. Display Technol. 4, 300 (2008)

    Article  Google Scholar 

  2. Kim, Y., Park, S., Moon, D., Kim, W., Han, J.: Displays 25, 167 (2004)

    Article  Google Scholar 

  3. Li, D., Guo, L.: J. Phys. D, Appl. Phys. 41, 105115 (2008)

    Article  Google Scholar 

  4. Yang, S., Jing, H.: J. Display Technol. 4, 245 (2008)

    Article  MathSciNet  Google Scholar 

  5. Crawford, G.P.: Rollable Active Matrix Displays with Organic Electronics. Wiley, New York (2005)

    Google Scholar 

  6. Baude, P.F., Ender, D.A., Haase, M.A., Kelley, T.W., Muyres, D.V., Theiss, S.D.: Appl. Phys. Lett. 82, 3964 (2003)

    Article  Google Scholar 

  7. Gundlach, D.J., Lin, Y.Y., Jackson, T.N., Nelson, S.F., Schlom, D.G.: IEEE Electron Device Lett. 18, 87 (1997)

    Article  Google Scholar 

  8. Kawasaki, M., Imazeki, S., Ando, M., Sekiguchi, Y., Hirota, S., Uemura, S., Kamata, T.: IEEE Trans. Electron Device 53, 435 (2006)

    Article  Google Scholar 

  9. Park, S.K., Mourey, D.A., Han, J., Anthony, J.E., Jackson, T.N.: Org. Electron. 10, 486 (2009)

    Article  Google Scholar 

  10. Anthony, J.E., Brooks, J.S., Eaton, D.L., Parkin, S.R.: J. Am. Chem. Soc. 123, 9482 (2001)

    Article  Google Scholar 

  11. Song, D.H., Choi, M.H., Kim, J.Y., Jang, J., Kirchmeyer, S.: Appl. Phys. Lett. 90, 53504 (2007)

    Article  Google Scholar 

  12. Chen, F., Chuang, C., Lin, Y., Kung, L., Chen, T., Shieh, H.D.: Org. Electron. 7, 435 (2006)

    Article  Google Scholar 

  13. Choi, C.G., Bae, B.: Synth. Met. 159, 1288 (2009)

    Article  Google Scholar 

  14. Chang, M.F., Lee, P.T., McAlister, S.P., Chin, A.: IEEE Electron Device Lett. 30, 133 (2009)

    Article  Google Scholar 

  15. Vaidya, V., Soggs, S., Kim, J., Haldi, A., Haddock, J.N., Kippelen, B., Wilson, D.M.: IEEE Trans. Circuits Syst. 55, 1117 (2008)

    MathSciNet  Google Scholar 

  16. Lee, S.H., Choo, D.J., Han, S.H., Kim, J.H., Son, Y.R., Jang, J.: Appl. Phys. Lett. 90, 33502 (2007)

    Article  Google Scholar 

  17. Rolin, C., Steudel, S., Myny, K., Cheyns, D., Verlaak, S., Genoe, J., Heremans, P.: Appl. Phys. Lett. 89, 203502 (2006)

    Article  Google Scholar 

  18. Park, J.G., Vasic, R., Brooks, J.S., Anthony, J.E.: J. Appl. Phys. 100, 44511 (2006)

    Article  Google Scholar 

  19. Kitamura, M., Arakawa, Y.: J. Phys. Condens. Matter 20, 84011 (2008)

    Article  Google Scholar 

  20. Dimitrakopoulos, C.D., Malenfant, P.R.L.: Adv. Mater. 14, 99 (2002)

    Article  Google Scholar 

  21. Hill, I.G.: Appl. Phys. Lett. 87, 163505 (2005)

    Article  Google Scholar 

  22. Islam, M.N., Mazhari, B.: Semicond. Sci. Technol. 23, 125027 (2008)

    Article  Google Scholar 

  23. Lee, J.B., Chang, P.C., Liddle, J.A., Subramanian, V.: IEEE Trans. Electron Device 52, 1874 (2005)

    Article  Google Scholar 

  24. Burgi, L., Richards, T.J., Friend, R.H., Sirringhaus, H.: J. Appl. Phys. 94, 6129 (2003)

    Article  Google Scholar 

  25. Li, T., Ruden, P.P., Campbell, I.H., Smith, D.L.: J. Appl. Phys. 93, 4017 (2003)

    Article  Google Scholar 

  26. Necliudov, P.V., Shur, M.S., Gundlach, D.J., Jackson, T.N.: Solid-State Electron. 47, 259 (2003)

    Article  Google Scholar 

  27. Nomoto, K., Hirai, N., Yoneya, N., Kawashima, N., Noda, M., Wada, M., Kasahara, J.: IEEE Trans. Electron Device 52, 1519 (2005)

    Article  Google Scholar 

  28. Anthopoulos, T.D., de Leeuw, D.M., Cantatore, E., Setayesh, S., Meijer, E.J., Tanase, C., Hummelen, J.C., Blom, P.W.M.: Appl. Phys. Lett. 85, 4205 (2004)

    Article  Google Scholar 

  29. Barret, M., Sanaur, S., Collot, P.: Org. Electron. 9, 1093 (2008)

    Article  Google Scholar 

  30. Klauk, H., Zschieschang, U., Halik, M.: J. Appl. Phys. 102, 74514 (2007)

    Article  Google Scholar 

  31. Majewski, L.A., Schroeder, R., Grell, M.: Appl. Phys. Lett. 85, 3620 (2004)

    Article  Google Scholar 

  32. Payne, M.M., Parkin, S.R., Anthony, J.E., Kuo, C., Jackson, T.N.: J. Am. Chem. Soc. 127, 4986 (2005)

    Article  Google Scholar 

  33. Richards, T.J., Sirringhaus, H.: J. Appl. Phys. 102, 94510 (2007)

    Article  Google Scholar 

  34. Wang, S.D., Minari, T., Miyadera, T., Tsukagoshi, K., Aoyagi, Y.: Appl. Phys. Lett. 91, 203508 (2007)

    Article  Google Scholar 

  35. Ishii, H., Seki, K.: IEEE Trans. Electron Device 44, 1295 (1997)

    Article  Google Scholar 

  36. Hill, I.G., Kahn, A., Soos, Z.G., Pascal, R.A., Jr.: Chem. Phys. Lett. 327, 181–188 (2000)

    Article  Google Scholar 

  37. Li, T., Balk, J.W., Ruden, P.P., Campbell, I.H., Smith, D.L.: J. Appl. Phys. 91, 4312 (2002)

    Article  Google Scholar 

  38. Stadlober, B., Haas, U., Gold, H., Haase, A., Jakopic, G., Leising, G., Koch, N., Rentenberger, S., Zojer, E.: Adv. Funct. Mater. 17, 2687 (2007)

    Article  Google Scholar 

  39. Gupta, D., Katiyar, M., Gupta, D.: Org. Electron. 10, 775–784 (2009)

    Article  Google Scholar 

  40. Xu, M., Nakamura, M., Sakai, M., Kudo, K.: Adv. Mater. 19, 371 (2007)

    Article  Google Scholar 

  41. Gowrisanker, S., Quevedo-Lopez, M.A., Alshareef, H.N., Gnade, B., Venugopal, S., Krishna, R., Kaftanoglu, K., Allee, D.: Org. Electron. 10, 1217–1222 (2009)

    Article  Google Scholar 

  42. Gowrisanker, S., Ai, Y., Jia, H., Quevedo-Lopez, M.A., Alshareef, H.N., Trachtenberg, I., Stiegler, H., Edwards, H., Barnett, R., Gnade, B.E.: Electrochem. Solid-State Lett. 12(3), H50–H53 (2009)

    Article  Google Scholar 

  43. Quevedo-Lopez, M.A., Gowrisanker, S., Alshareef, H.N., Gnade, B., Venugopal, S., Krishna, R., Kaftanoglu, K., Allee, D.: ECS Trans. 25, 503 (2009)

    Article  Google Scholar 

  44. ATLAS User’s Manual: Device simulation software. Silvaco International, Santa Clara, CA (2007)

  45. Horowitz, G.: Adv. Mater. 10, 365–377 (1998)

    Article  Google Scholar 

  46. Li, L., Meller, G., Kosina, H.: J. Comput. Electron. 6, 357–361 (2007)

    Article  Google Scholar 

  47. Singh, M., Thompson, R.B., Dumas, O.: Phys. Rev. B 53, 6806 (1996)

    Article  Google Scholar 

  48. Kabasawa, U., Tarutani, Y., Okamoto, M., Takagi, K.: Phys. Rev. Lett. 70, 1700 (1993)

    Article  Google Scholar 

  49. Le Comber, P.G., Spear, W.E.: Phys. Rev. Lett. 25, 509 (1970)

    Article  Google Scholar 

  50. Stallinga, P., Gomes, H.L., Biscarini, F., Murgia, M., de Leeuw, D.M.: J. Appl. Phys. 96, 5278–5283 (2004)

    Article  Google Scholar 

  51. Wang, L., Fine, D., Basu, D., Dodabalapur, A.: J. Appl. Phys. 101, 54515 (2007)

    Article  Google Scholar 

  52. Calvert, P.: Chem. Mater. 13, 3299 (2001)

    Article  Google Scholar 

  53. Kol, S.H., Panl, H., Grigoropoulos, C.P., Luscombe, C.K., Frechet, J.MJ., Poulikakos, D.: Nanotechnology 18, 345202 (2007)

    Article  Google Scholar 

  54. Jackson, T.N., Lin, Y., Gundlach, D.J., Klauk, H.: IEEE J. Sel. Top. Quantum Electron. 4, 100 (1998)

    Article  Google Scholar 

  55. Koch, N., Kahn, A., Ghijsen, J., Pireaux, J.-J., Schwartz, J., Johnson, R.L., Elschner, A.: Appl. Phys. Lett. 82, 70–72 (2003)

    Article  Google Scholar 

  56. Kahn, A., Koch, N., Gao, W.: J. Polym. Sci. Part B, Polym. Phys. 41, 2529 (2003)

    Article  Google Scholar 

  57. Li, H., Duan, Y., Coropceanu, V., Bredas, J.L.: Org. Electron. 10, 1571–1578 (2009)

    Article  Google Scholar 

  58. Lee, S.T., Hou, X.Y., Mason, M.G., Tang, C.W.: Appl. Phys. Lett. 72, 1593–1595 (1998)

    Article  Google Scholar 

  59. Bolognesi, A., Carlo, A.D., Lugli, P.: Appl. Phys. Lett. 81, 4646 (2002)

    Article  Google Scholar 

  60. Gupta, D., Katiyar, M., Deepak: IEEE Xplore (2007)

  61. Bolognesi, A., Berliocchi, M., Manenti, M., Carlo, A.D., Lugli, P., Lmimouni, K., Dufour, C.: IEEE Trans. Electron Devices 51, 1997 (2004)

    Article  Google Scholar 

  62. Yang, Y.S., Zyung, T.: Macromol. Res. 10, 75 (2002)

    Google Scholar 

  63. Benor, A., Hoppe, A., Wagner, V., Knipp, D.: Org. Electron. 8, 749 (2007)

    Article  Google Scholar 

  64. Meijera, E.J., Gelinck, G.H., van Veenendaal, E., Huisman, B.-H., De Leeuw, D.M., Klapwijk, T.M.: Phys. Lett. 82, 4576 (2003)

    Google Scholar 

  65. Miyadera, T., Minari, T., Tsukagoshi, K., Ito, H., Aoyagi, Y.: Appl. Phys. Lett. 91, 13512 (2007)

    Article  Google Scholar 

  66. Sekitan, T., Noguch, Y., Zschieschang, U., Klauk, H., Someya, T.: Proc. Natl. Acad. Sci. USA 105, 4976 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Wondmagegn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wondmagegn, W.T., Satyala, N.T., Pieper, R.J. et al. Impact of semiconductor/metal interfaces on contact resistance and operating speed of organic thin film transistors. J Comput Electron 10, 144–153 (2011). https://doi.org/10.1007/s10825-010-0311-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-010-0311-1

Keywords

Navigation