Skip to main content
Log in

Charge density variation with fin width in FinFETs: an application of supersymmetric quantum mechanics

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

FinFETs have become of great interest since it appears that they will be implemented within the next generation of integrated circuits. One point of interest is the transition from surface inversion on the faces of the fin to bulk inversion as the fin width is reduced. We have found that a good scaling approach can give estimates of this transition, with the scaling theory based upon supersymmetric quantum mechanics. For this, a double well potential is chosen whose supersymmetric partner is the harmonic oscillator potential. The depths and the separation between the wells were varied to simulate the change in fin widths. The fraction of charge residing inside the bulk, calculated as a function of fin width and electron density, was determined by calculating overlap area between the squared wave function magnitude of any state and that of a pure bulk state. More charges reside in the bulk for any electron density as the fin width decreases. On the other hand, for a fixed fin width, increasing electron density moves charge to the surface. It was found that in a Si FinFET, bulk inversion occurs at a fin width of about 8 nm for an inversion density of 3×1012 cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dennard, R.H., Gaensslen, F.H., Yu, H., Rideout, V.L., Bassons, E., LeBlanc, A.R.: IEEE J. Solid. State Circuits 9, 256 (1974)

    Article  Google Scholar 

  2. Baccarani, G., Wordeman, M.R., Dennard, R.H.: IEEE Trans. Electron Devices 31, 452 (1984)

    Article  Google Scholar 

  3. Yan, R.H., Ourmazd, A., Lee, K.F.: IEEE Trans. Electron Devices 39, 1704 (1992)

    Article  Google Scholar 

  4. Suzuki, K., Tanaka, T., Tosaka, Y., Horie, H., Arimoto, Y.: IEEE Trans. Electron Devices 40, 2326 (1993)

    Article  Google Scholar 

  5. Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Lilienthal, Z., Fathy, D., Krivanek, O.L.: Phys. Rev. B 32, 8171 (1985)

    Article  Google Scholar 

  6. Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., King, C.-J., Bokor, J., Hu, C.: IEEE Trans. Electron Devices 47, 2320 (2000)

    Article  Google Scholar 

  7. Wong, H.S., Frank, D.J., Taur, Y., Stork, J.M.C.: Tech. Dig. Int. Electron Devices Meet. 747 (1994)

  8. Majkusiak, B., Janik, T., Walczak, J.: IEEE Trans. Electron Devices 45, 1127 (1998)

    Article  Google Scholar 

  9. Fiegna, C., et al.: VLSI Symp. Tech. Dig. 33 (1993)

  10. Sekigawa, T., Hayashi, Y.: Solid-State Electron. 27, 827 (1984)

    Article  Google Scholar 

  11. Colinge, J.P., Gao, M.H., Rodriguez, A.R., Claeys, C.: Tech. Dig. Int. Electron Devices Meet. 595 (1990)

  12. Hisamoto, D., Kaga, T., Takeda, E.: IEEE Trans. Electron Devices 38, 1419 (1991)

    Article  Google Scholar 

  13. Horie, H., Ando, S., Tanaka, T., Imai, M., Arimoto, Y., Hijiya, S.: SSDM Tech. Dig. 165 (1991)

  14. Tanaka, T., Horie, H., Ando, S., Hijiya, S.: Tech. Dig. Int. Electron Devices Meet. 683 (1991)

  15. Miyano, S., Hirose, M., Masuoka, F.: IEEE Trans. Electron Devices 39, 1876 (1992)

    Article  Google Scholar 

  16. Balestra, F., Cristoloveanu, S., Benachir, M., Elewa, T.: IEEE Electron Device Lett. 8, 410 (1987)

    Article  Google Scholar 

  17. Venkatesan, S., Neudeck, G.W., Pierret, R.F.: IEEE Electron Device Lett. 13, 44 (1992)

    Article  Google Scholar 

  18. Frank, D.J., Laux, S.E., Fischetti, M.: Tech. Dig. Int. Electron Devices Meet. 553 (1992)

  19. Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., King, C.-J., Bokor, J., Hu, C.: IEEE Trans. Electron Devices 47, 2320 (2000)

    Article  Google Scholar 

  20. Doyle, B.S., Datta, S., Doczy, M., Hareland, S., Jin, B., Kavalieros, J., Linton, T., Murthy, A., Rios, R.: IEEE Electron Device Lett. 24, 263 (2003)

    Article  Google Scholar 

  21. Kavalieros, J., Doyle, B., Datta, S., Dewey, G., Doczy, M., Jin, B., Lionberger, D., Metz, M., Rachmadey, W., Radosavljevic, M., Shah, U., Zelick, N., Chau, R.: VLSI Symp. Dig. Tech. Papers 62 (2006)

  22. Ramey, S.M., Ferry, D.K.: IEEE Trans. Nanotechnol. 2, 110 (2003)

    Article  Google Scholar 

  23. Lundstrom, M.S.: IEEE Electron Device Lett. 18, 361 (1997)

    Article  Google Scholar 

  24. Sukumar, C.V.: J. Phys. A 18, 2917 (1985)

    Article  MathSciNet  Google Scholar 

  25. Cooper, F., Khareb, A., Sukhatme, U.: Phys. Rep. 251, 267 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razib S. Shishir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishir, R.S., Ferry, D.K. Charge density variation with fin width in FinFETs: an application of supersymmetric quantum mechanics. J Comput Electron 7, 14–19 (2008). https://doi.org/10.1007/s10825-008-0205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-008-0205-7

Keywords

Navigation