Skip to main content
Log in

A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Using data from the in vitro liver microsomes metabolic stability assay, we have developed QSAR models to predict in vitro human clearance. Models were trained using in house high-throughput assay data reported as the predicted human hepatic clearance by liver microsomes or pCLh. Machine learning regression methods were used to generate the models. Model output for a given molecule was reported as its probability of being metabolically stable, thus allowing for synthesis prioritization based on this prediction. Use of probability, instead of the regression value or categories, has been found to be an efficient way for both reporting and assessing predictions. Model performance is evaluated using prospective validation. These models have been integrated into a number of desktop tools, and the models are routinely used to prioritize the synthesis of compounds. We discuss two therapeutic projects at Genentech that exemplify the benefits of a probabilistic approach in applying the models. A three-year retrospective analysis of measured liver microsomes stability data on all registered compounds at Genentech reveals that the use of these models has resulted in an improved metabolic stability profile of synthesized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUC(i)/AUC) ratios. Drug Metab Dispos 32(11):1201–1208

    Article  CAS  Google Scholar 

  2. Houston JB (1994) Utility of in vitro drug-metabolism data in predicting in vivo metabolic-clearance. Biochem Pharmacol 47(9):1469–1479

    Article  CAS  Google Scholar 

  3. Lee PH, Cucurull-Sanchez L, Lu J, Du YHJ (2007) Development of in silico models for human liver microsomal stability. J Comput Aided Mol Design 21(12):665–673

    Article  CAS  Google Scholar 

  4. Ekins S, Gupta RR, Gifford EM, Liston T, Waller CL, Hohman M, Bunin BA (2010) Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties. Drug Metab Dispos 38(11):2083–2090

    Article  Google Scholar 

  5. Hu YB, Unwalla R, Denny RA, Bikker J, Di L, Humblet C (2010) Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability. J Comput Aided Mol Design 24(1):23–35

    Article  CAS  Google Scholar 

  6. Sakiyama Y, Yuki H, Moriya T, Hattori K, Suzuki M, Shimada K, Honma T (2008) Predicting human liver microsomal stability with machine learning techniques. J Mol Graph Model 26(6):907–915

    Article  CAS  Google Scholar 

  7. Langowski J, Long A (2002) Computer systems for the prediction of xenobiotic metabolism. Adv Drug Deliv Rev 54(3):407–415

    Article  CAS  Google Scholar 

  8. Czodrowski P, Kriegl JM, Scheuerer S, Fox T (2009) Computational approaches to predict drug metabolism. Expert Opin Drug Met 5(1):15–27

    Article  CAS  Google Scholar 

  9. Zhang T, Chen Q, Li L, Liu LA, Wei DQ (2011) In silico prediction of cytochrome P450-mediated drug metabolism. Comb Chem High Throughput Screen 14(5):388–395

    Article  CAS  Google Scholar 

  10. Gleeson MP, Hersey A, Hannongbua S (2011) In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem 11(4):358–381

    Article  CAS  Google Scholar 

  11. Halladay JS, Wong S, Merchant S, Khojasteh-Bakht SC, Sinhababu A (2006) Metabolic stability screen for drug discovery using cassette analysis and column switching. Drug Metab Rev 38:149

    Article  Google Scholar 

  12. ADMET Predictor, Simulations Plus: Lancaster, CA, USA

  13. Stardrop v4.3, Optibrium LTD.: Cambridge, UK

  14. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48(22):6970–6979

    Article  CAS  Google Scholar 

  15. Liu LC, Halladay JS, Shin Y, Wong S, Coraggio M, La H, Baumgardner M, Le H, Gopaul S, Boggs J, Kuebler P, Davis JC, Liao XC, Lubach JW, Deese A, Sowell CG, Currie KS, Young WB, Khojasteh SC, Hop CECA, Wong H (2011) Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton’s tyrosine kinase inhibitor. Drug Metab Dispos 39(10):1840–1849

    Article  CAS  Google Scholar 

  16. Kirchmair J, Williamson MJ, Tyzack JD, Tan L, Bond PJ, Bender A, Glen RC (2012) Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model 52(3):617–648

    Article  CAS  Google Scholar 

  17. Shin YG, Le H, Khojasteh C, Hop CE (2011) Comparison of metabolic soft spot predictions of CYP3A4, CYP2C9 and CYP2D6 substrates using MetaSite and StarDrop. Comb Chem High Throughput Screen 14(9):811–823

    Article  CAS  Google Scholar 

  18. Segall M (2011) Guiding effective decisions: an interview with Matthew Segall, CEO of Optibrium. Interview by Wendy A. Warr. J Comput Aided Mol Des 25(2):103–106

    Article  Google Scholar 

  19. Segall M, Champness E, Leeding C, Lilien R, Mettu R, Stevens B (2011) Applying medicinal chemistry transformations and multiparameter optimization to guide the search for high-quality leads and candidates. J Chem Inf Model 51(11):2967–2976

    Article  CAS  Google Scholar 

  20. Muchmore SW, Debe DA, Metz JT, Brown SP, Martin YC, Hajduk PJ (2008) Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J Chem Inf Model 48(5):941–948

    Article  CAS  Google Scholar 

  21. Swann SL, Brown SP, Muchmore SW, Patel H, Merta P, Locklear J, Hajduk PJ (2011) A unified, probabilistic framework for structure-and ligand-based virtual screening. J Med Chem 54(5):1223–1232

    Article  CAS  Google Scholar 

  22. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton, p xiii

    Google Scholar 

  23. Warmuth MK, Liao J, Ratsch G, Mathieson M, Putta S, Lemmen C (2003) Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci 43(2):667–673

    Article  CAS  Google Scholar 

  24. Ivanciuc O (2007) Applications of support vector machines in chemistry. Rev Comput Chem 23:291–400

    CAS  Google Scholar 

  25. Gleeson NP, Weaver S (2008) The importance of the domain of applicability in QSAR modeling. J Mol Graph Model 26(8):1315–1326

    Article  Google Scholar 

  26. Sheridan RP, Feuston BP, Maiorov VN, Kearsley SK (2004) Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci 44(6):1912–1928

    Article  CAS  Google Scholar 

  27. Pipeline Pilot, v7.5, v7.5, Accelrys Inc.: San Diego, CA, USA

  28. Muchmore SW, E. J., Stewart KD, Hajduk PJ (2010) In Cheminformatic Tools for Medicinal Chemists., PoLAR, pp 4830–4841

  29. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  CAS  Google Scholar 

  30. ChEMBL database. https://www.ebi.ac.uk/chembldb/

  31. R Project for Statistical Computing, (R-3.2.1). www.r-project.org/

  32. Hall LH, Kier LB (2000) The E-state as the basis for molecular structure space definition and structure similarity. J Chem Inf Comput Sci 40(3):784–791

    Article  CAS  Google Scholar 

  33. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280

    Article  CAS  Google Scholar 

  34. Henry DR, Durant JL (2005) Optimization of MDL substructure search keys for the prediction of activity and toxicity. Chemom Chemoinformatics 894:145–156

    Article  CAS  Google Scholar 

  35. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem A 102(21):3762–3772

    Article  CAS  Google Scholar 

  36. Schuurmann G, Ebert RU, Chen JW, Wang B, Kuhne R (2008) External validation and prediction employing the predictive squared correlation coefficient—test set activity mean vs training set activity mean. J Chem Inf Model 48(11):2140–2145

    Article  Google Scholar 

  37. Carletta J (1996) Assessing agreement on classification tasks: the kappa statistic. Comput Linguist 22(2):249–254

    Google Scholar 

  38. Forina M, Oliveri P, Lanteri S, Casale M (2008) Class-modeling techniques, classic and new, for old and new problems. Chemom Intell Lab Syst 93(2):132–148

    Article  CAS  Google Scholar 

  39. Lee ML, Aliagas I, Dotson J, Feng JW, Gobbi A, Heffron T (2012) DEGAS: sharing and tracking target compound ideas with external collaborators. J Chem Inf Model 52(2):278–284

    Article  CAS  Google Scholar 

  40. Pymol, Schrodinger: Portland, OR, USA

  41. Benchware 3D Explorer v3.5, 3.5, Tripos International: Saint Louis, MO, USA

  42. MOE, v.2011, Chemical Computing Group: Montreal, Quebec, Canada

  43. Kalea, Kelaroo: San Diego, CA, USA

  44. Hop CECA, Cole MJ, Davidson RE, Duignan DB, Federico J, Janiszewski JS, Jenkins K, Krueger S, Lebowitz R, Liston TE, Mitchell W, Snyder M, Steyn SJ, Soglia JR, Taylor C, Troutman MD, Umland J, West M, Whalen KM, Zelesky V, Zhao SX (2008) High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models. Curr Drug Metab 9(9):847–853

    Article  CAS  Google Scholar 

  45. Kulagowski JJ, Blair W, Bull RJ, Chang C, Deshmukh G, Dyke HJ, Eigenbrot C, Ghilardi N, Gibbons P, Harrison TK, Hewitt PR, Liimatta M, Hurley CA, Johnson A, Johnson T, Kenny JR, Bir Kohli P, Maxey RJ, Mendonca R, Mortara K, Murray J, Narukulla R, Shia S, Steffek M, Ubhayakar S, Ultsch M, van Abbema A, Ward SI, Waszkowycz B, Zak M (2012) Identification of imidazo-pyrrolopyridines as novel and potent JAK1 inhibitors. J Med Chem 55:5901

    Article  CAS  Google Scholar 

  46. Zak M, Mendonca R, Balazs M, Barrett K, Bergeron P, Blair WS, Chang C, Deshmukh G, DeVoss J, Dragovich PS, Eigenbrot C, Ghilardi N, Gibbons P, Gradl S, Hamman C, Hanan E, Harstad E, Hewitt PR, Hurley CA, Jin T, Johnson A, Johnson T, Kenny JR, Koehler MFT, Bir Kohli P, Kulagowski J, Labadie S, Liao J, Liimatta M, Lin Z, Lupardus PJ, Maxey RJ, Murray JM, Pulk R, Rodriguez M, Savage S, Shia S, Steffek M, Ubhayakar S, Ultsch M, Van-Abbema A, Ward S, Xiao L, Xiao Y (2012) Discovery and optimization of C-2 methyl imidazo-pyrrolopyridines as potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. J Med Chem 55:6176

    Article  CAS  Google Scholar 

  47. Zak M, Hurley CA, Ward SI, Bergeron P, Barrett K, Balazs M, Blair WS, Bull R, Chakravarty P, Chang C, Crackett P, Deshmukh G, DeVoss J, Dragovich PS, Eigenbrot C, Ellwood C, Gaines S, Ghilardi N, Gibbons P, Gradl S, Gribling P, Hamman C, Harstad E, Hewitt P, Johnson A, Johnson T, Kenny JR, Koehler MFT, Kohli PB, Labadie S, Lee WP, Liao JP, Liimatta M, Mendonca R, Narukulla R, Pulk R, Reeve A, Savage S, Shia S, Steffek M, Ubhayakar S, van Abbema A, Aliagas I, Avitabile-Woo B, Xiao YS, Yang J, Kulagowski JJ (2013) Identification of C-2 hydroxyethyl imidazopyrrolopyridines as potent JAK1 inhibitors with favorable physicochemical properties and high selectivity over JAK2. J Med Chem 56(11):4764–4785

    Article  CAS  Google Scholar 

  48. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC, Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH, Raynaud FI, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M, Wallweber HJA, Wan NC, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil MJ, Shuttleworth SJ (2008) The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 51(18):5522–5532

    Article  CAS  Google Scholar 

  49. Sutherlin DP, Bao L, Berry M, Castanedo G, Chuckowree I, Dotson J, Folks A, Friedman L, Goldsmith R, Gunzner J, Heffron T, Lesnick J, Lewis C, Mathieu S, Murray J, Nonomiya J, Pang J, Pegg N, Prior WW, Rouge L, Salphati L, Sampath D, Tian QP, Tsui V, Wan NC, Wang SM, Wei BQ, Wiesmann C, Wu P, Zhu BY, Olivero A (2011) Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J Med Chem 54(21):7579–7587

    Article  CAS  Google Scholar 

  50. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283(1):46–58

    CAS  Google Scholar 

  51. Wilkinson GR, Shand DG (1975) Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther 18(4):377–390

    CAS  Google Scholar 

  52. Yang J, Jamei M, Yeo KR, Rostami-Hodjegan A, Tucker GT (2007) Misuse of the well-stirred model of hepatic drug clearance. Drug Metab Dispos Biol Fate Chem 35(3):501–502

    Article  CAS  Google Scholar 

  53. Wan H, Bold P, Larsson LO, Ulander J, Peters S, Lofberg B, Ungell AL, Nagard M, Llinas A (2010) Impact of input parameters on the prediction of hepatic plasma clearance using the well-stirred model. Curr Drug Metab 11(7):583–594

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jason S. Halladay, Ning Liu, Suzanne Tay, Mika Kosaka, and Jane Lovelidge have developed the in house robust LMs stability assays. We thank Marcel Hop from the DMPK department and Bruce Roth from Discovery Chemistry for their support, Jane Kenny from DMPK for her active role in promoting the use of the models across project teams, Fabio Broccatelli for his assistance in curating the external dataset, Jianwen Feng for integrating the model in various desktop tools, Joachim Rudolph from Discovery Chemistry, and Ronitte Libedinsky for her editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Aliagas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CSV 250 kb)

Supplementary material 2 (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliagas, I., Gobbi, A., Heffron, T. et al. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery. J Comput Aided Mol Des 29, 327–338 (2015). https://doi.org/10.1007/s10822-015-9838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9838-3

Keywords

Navigation