Skip to main content
Log in

Structure-based virtual screening of small-molecule antagonists of platelet integrin αIIbβ3 that do not prime the receptor to bind ligand

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Integrin αIIbβ3 has emerged as an important therapeutic target for thrombotic vascular diseases owing to its pivotal role in mediating platelet aggregation through interaction with adhesive ligands. In the search for effective anti-thrombotic agents that can be administered orally without inducing the high-affinity ligand binding state, we recently discovered via high-throughput screening of 33,264 compounds a novel, αIIbβ3-selective inhibitor (RUC-1) of adenosine-5′-diphosphate (ADP) -induced platelet aggregation that exhibits a different chemical scaffold and mode of binding with respect to classical Arg-Gly-Asp (RGD)-mimicking αIIbβ3 antagonists. Most importantly, RUC-1 and its higher-affinity derivative, RUC-2, do not induce major conformational changes in the protein β3 subunit or prime the receptor to bind ligand. To identify additional αIIbβ3-selective chemotypes that inhibit platelet aggregation through similar mechanisms, we screened in silico over 2.5 million commercially available, ‘lead-like’ small molecules based on complementarity to the predicted binding mode of RUC-2 into the RUC-1-αIIbβ3 crystal structure. This first reported structure-based virtual screening application to the αIIbβ3 integrin led to the identification of 2 αIIbβ3-selective antagonists out of 4 tested, which compares favorably with the 0.003 % “hit rate” of our previous high-throughput chemical screening study. The newly identified compounds, like RUC-1 and RUC-2, showed specificity for αIIbβ3 compared to αVβ3 and did not prime the receptor to bind ligand. They thus may hold promise as αIIbβ3 antagonist therapeutic scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL (2006) Measuring the global burden of disease and risk factors, 1990–2001. Global burden of disease and risk factors, 2011/01/21 edn. World Bank, Washington

  2. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209

    Article  Google Scholar 

  3. Yang G, Kong L, Zhao W, Wan X, Zhai Y, Chen LC, Koplan JP (2008) Emergence of chronic non-communicable diseases in China. Lancet 372(9650):1697–1705

    Article  Google Scholar 

  4. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  Google Scholar 

  5. Springer TA, Zhu J, Xiao T (2008) Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. J Cell Biol 182(4):791–800

    Article  CAS  Google Scholar 

  6. Basani RB, D’Andrea G, Mitra N, Vilaire G, Richberg M, Kowalska MA, Bennett JS, Poncz M (2001) RGD-containing peptides inhibit fibrinogen binding to platelet alpha(IIb)beta3 by inducing an allosteric change in the amino-terminal portion of alpha(IIb). J Biol Chem 276(17):13975–13981

    CAS  Google Scholar 

  7. Hagemeyer CE, Peter K (2010) Targeting the platelet integrin GPIIb/IIIa. Curr Pharm Des 16(37):4119–4133

    Article  CAS  Google Scholar 

  8. Cox D (2004) Oral GPIIb/IIIa antagonists: what went wrong? Curr Pharm Des 10(14):1587–1596

    Article  CAS  Google Scholar 

  9. Chew DP, Bhatt DL, Topol EJ (2001) Oral glycoprotein IIb/IIIa inhibitors: why don’t they work? Am J Cardiovasc Drugs 1(6):421–428

    Article  CAS  Google Scholar 

  10. Scirica BM, Cannon CP, Cooper R, Aster RH, Brassard J, McCabe CH, Charlesworth A, Skene AM, Braunwald E (2006) Drug-induced thrombocytopenia and thrombosis: evidence from patients receiving an oral glycoprotein IIb/IIIa inhibitor in the Orbofiban in patients with unstable coronary syndromes-(OPUS-TIMI 16) trial. J Thromb Thrombolysis 22(2):95–102

    Article  CAS  Google Scholar 

  11. Blue R, Murcia M, Karan C, Jirouskova M, Coller BS (2008) Application of high-throughput screening to identify a novel alphaIIb-specific small-molecule inhibitor of alphaIIbbeta3-mediated platelet interaction with fibrinogen. Blood 111(3):1248–1256

    Article  CAS  Google Scholar 

  12. Zhu J, Negri A, Provasi D, Filizola M, Coller BS, Springer TA (2010) Closed headpiece of integrin alphaIIbbeta3 and its complex with an alphaIIbbeta3-specific antagonist that does not induce opening. Blood 116(23):5050–5059

    Article  CAS  Google Scholar 

  13. McCoy J, Shen M, Huang W, Coller B, Thomas CJ (2010) Inhibitors of platelet integrin alphallbbeta3. Probe reports from the NIH molecular libraries program [Internet] Bethesda (MD): National Center for Biotechnology Information (US); 2010 Mar 27 [updated 2011 Mar 3]

  14. Zhu J, Choi WS, McCoy JG, Negri A, Naini S, Li J, Shen M, Huang W, Bougie D, Rasmussen M, Aster R, Thomas CJ, Filizola M, Springer TA, Coller BS (2012) Structure-guided design of a high-affinity platelet integrin alphaIIbbeta3 receptor antagonist that disrupts Mg(2)(+) binding to the MIDAS. Sci Trans Med 4(125):125ra132

    Google Scholar 

  15. Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  Google Scholar 

  16. Boström J, Greenwood JR, Gottfries J (2003) Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J Mol Graph Model 21(5):449–462

    Article  Google Scholar 

  17. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comp Chem 7(2):230–252

    Article  CAS  Google Scholar 

  18. Chambers CC, Hawkins GD, Cramer CJ, Truhlar DG (1996) Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. J Phys Chem 100:16385–16398

    Article  CAS  Google Scholar 

  19. Li JB, Zhu TH, Cramer CJ, Truhlar DG (1998) New class IV charge model for extracting accurate partial charges from wave functions. J Phys Chem A 102:1820–1831

    Article  CAS  Google Scholar 

  20. Lorber DM, Shoichet BK (1998) Flexible ligand docking using conformational ensembles. Protein Sci 7(4):938–950

    Article  CAS  Google Scholar 

  21. Lorber DM, Shoichet BK (2005) Hierarchical docking of databases of multiple ligand conformations. Curr Top Med Chem 5(8):739–749

    Article  CAS  Google Scholar 

  22. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288

    Article  CAS  Google Scholar 

  23. Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J Comp Chem 12(4):435–445

    Article  CAS  Google Scholar 

  24. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner PA (1984) A new force-field for molecular mechanical simulation of nucleic-acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  25. Shoichet BK, Leach AR, Kuntz ID (1999) Ligand solvation in molecular docking. Proteins Struct Funct Genet 34:4–16

    Article  CAS  Google Scholar 

  26. Wei BQQ, Baase WA, Weaver LH, Matthews BW, Shoichet BK (2002) A model binding site for testing scoring functions in molecular docking. J Mol Biol 322:339–355

    Article  CAS  Google Scholar 

  27. Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell A (2011) jCompoundMapper: an open source Java library and command-line tool for chemical fingerprints. J Cheminform 3(3):1–14

    Google Scholar 

  28. Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D Atomic coordinates for organic molecules. Tetrahedron Comp Method 3:537–547

    Article  CAS  Google Scholar 

  29. Du XP, Plow EF, Frelinger AL III, O’Toole TE, Loftus JC, Ginsberg MH (1991) Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell 65(3):409–416

    Article  CAS  Google Scholar 

  30. Zhou Y, Peng H, Ji Q, Qi J, Zhu Z, Yang C (2006) Discovery of small molecule inhibitors of integrin alphavbeta3 through structure-based virtual screening. Bioorg Med Chem Lett 16(22):5878–5882

    Article  CAS  Google Scholar 

  31. Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38(6):983–996

    Article  CAS  Google Scholar 

  32. Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10(7):682–686

    Article  CAS  Google Scholar 

  33. Wawer M, Bajorath J (2010) Similarity-potency trees: a method to search for SAR information in compound data sets and derive SAR rules. J Chem Inf Model 50(8):1395–1409

    Article  CAS  Google Scholar 

  34. Hays SJ, Caprathe BW, Gilmore JL, Amin N, Emmerling MR, Michael W, Nadimpalli R, Nath R, Raser KJ, Stafford D, Watson D, Wang K, Jaen JC (1998) 2-amino-4H-3,1-benzoxazin-4-ones as inhibitors of C1r serine protease. J Med Chem 41(7):1060–1067

    Article  CAS  Google Scholar 

  35. Plummer JS, Cai C, Hays SJ, Gilmore JL, Emmerling MR, Michael W, Narasimhan LS, Watson MD, Wang K, Nath R, Evans LM, Jaen JC (1999) Benzenesulfonamide derivatives of 2-substituted 4H–3,1-benzoxazin-4-ones and benzthiazin-4-ones as inhibitors of complement C1r protease. Bioorg Med Chem Lett 9(6):815–820

    Article  CAS  Google Scholar 

  36. Chang JH, Lee IS, Kim HK, Cho YK, Park JM, Kim SW, Choi MG, Chung IS (2009) Nafamostat for prophylaxis against post-endoscopic retrograde cholangiopancreatography pancreatitis compared with gabexate. Gut Liver 3(3):205–210

    Article  Google Scholar 

  37. Fuse I, Higuchi W, Toba K, Aizawa Y (1999) Inhibitory mechanism of human platelet aggregation by nafamostat mesilate. Platelets 10(4):212–218

    Article  CAS  Google Scholar 

  38. Hodohara K, Fujiyama Y, Hosoda S, Yasunaga K (1989) Inhibition of fibrinogen binding to ADP-stimulated human platelets by synthetic serine protease inhibitors. Blood Vessel 20:213–219

    Article  CAS  Google Scholar 

  39. Ono S, Inoue Y, Yoshida T, Ashimori A, Kosaka K, Imada T, Fukaya C, Nakamura N (1999) Preparation and pharmacological evaluation of novel glycoprotein (Gp) IIb/IIIa antagonists. 1. The selection of naphthalene derivatives. Chem Pharm Bull (Tokyo) 47(12):1685–1693

    Article  CAS  Google Scholar 

  40. Bovy PR, Rico JG, Rogers TE, Tjoeng FS, Zablocki JA (1993) Substituted β-amino acid derivatives useful as platelet aggregation inhibitors and intermediates thereof. Patent number: 5239113, Issue date: 24 Aug 1993

Download references

Acknowledgments

The authors wish to thank Drs. Mihaly Mezei and Davide Provasi from Mount Sinai School of Medicine for technical assistance with similarity calculations, Joseph Fernandez and Nagarajan Chandramouli from the Rockefeller University Proteomics Resource Center for mass spectroscopy analysis and compound purification, Yufeng Wei from the Rockefeller University Spectroscopy Resource Center for NMR analysis, and Mayte Suarez-Farinas for statistical analysis. This work was supported by NHLBI grant HL019278, a Clinical and Translational Science Award 2UL1RR024143 to Rockefeller University, and funds from Stony Brook University. Computations were run on resources available through the Scientific Computing Facility of Mount Sinai School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Filizola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negri, A., Li, J., Naini, S. et al. Structure-based virtual screening of small-molecule antagonists of platelet integrin αIIbβ3 that do not prime the receptor to bind ligand. J Comput Aided Mol Des 26, 1005–1015 (2012). https://doi.org/10.1007/s10822-012-9594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9594-6

Keywords

Navigation