Skip to main content
Log in

Mechanism of heat transport in nanofluids

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

We have calculated thermal conductivity of alumina nanofluids (with water and ethylene glycol as base fluids) using temperature as well as concentration-dependent viscosity, η. The temperature profile of η is obtained using Gaussian fit to the available experimental data. In the model, the interfacial resistance effects are incorporated through a phenomenological parameter α. The micro-convection of the alumina nanoparticle (diameter less than 100 nm) is included through Reynolds and Prandtl numbers. The model is further improved by explicitly incorporating the thermal conductivity of the nanolayer surrounding the nanoparticles. Using this improved model, thermal conductivity of copper nanofluid is calculated. These calculations capture the particle concentration-dependent thermal conductivity and predict the dependence of the thermal conductivity on the size of the nanoparticle. These studies are significant to understand the underlying processes of heat transport in nanofluids and are crucial to design superior coolants of next generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Singer, D.A., Wang H.P. (eds.), Fluids, FED-vol. 231/MD-vol. 66, pp. 99-105. ASME, New York (1995)

  2. Klimontovich Y.L. (1995). Statistical Theory of Open Systems: Unified Approach to Kinetic Description of Processes in Active Systems vol. 1. Kluwer Academic Publications, London

    Google Scholar 

  3. Xuan Y., Li Q. and Hu W. (2003). Aggregation structure and thermal conductivity of nanofluids. AlChE J. 49: 1038–1043

    CAS  Google Scholar 

  4. Jang S.P. and Choi S.U.S. (2004). Role of Brownian motion in the enhanced thermal conductivity. App. Phys. Lett. 84: 4316–4318

    Article  CAS  Google Scholar 

  5. Eastman J.A., Choi S.U.S., Li S., Yu W. and Thompson L.J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. App. Phys. Lett. 78: 718–720

    Article  CAS  Google Scholar 

  6. Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E. and Grulke E. (2001). App. Phys. Lett. 79: 2252

    Article  CAS  Google Scholar 

  7. Maxwell J.C. (1873). Electricity and Magnetism. Clarendon Press, Oxford, UK

    Google Scholar 

  8. Das S.K., Putra N., Thiesen P. and Roetzel W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125: 567–574

    Article  CAS  Google Scholar 

  9. Keblinski P., Phillpot S.R., Choi S.U.S. and Eastman J.A. (2002). Mechanism of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45: 855–863

    Article  CAS  Google Scholar 

  10. Evans W., Fish J. and Keblinski P. (2006). Role of Brownian motion hydrodynamics in nanofluid thermal conductivity. App. Phys. Lett. 88: 093116-3

    Google Scholar 

  11. Koo J. and Kleinstreuer C.J. (2005). A new thermal conductivity model for nanofluids. Nanopart. Res. 6: 577–588

    Article  Google Scholar 

  12. Hong T.-K., Yang Hi.-S. and Choi C.J. (2005). Study of the enhanced thermal conductivity of Fe nanofluids. J. App. Phys. 97: 064311-4

    Google Scholar 

  13. Eastman J.A., Phillpot S.R., Choi S.U.S. and Keblinski P. (2004). Thermal transport in nanofluids. Ann. Rev. Mater. Res. 34: 219–246

    Article  CAS  Google Scholar 

  14. Prasher R., Bhattacharya P. and Phelan P.E. (2005). Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 94: 025901-4

    Article  Google Scholar 

  15. Barrat J. and Chiaruttini F. (2003). Kapitza resistance at liquid-solid interface. Mol. Phys. 101: 1605–1609

    Article  CAS  Google Scholar 

  16. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris C.H., Merlin H.J. and Phillpot S.R. (2003). Nanoscale thermal transport. J. App. Phys. 93: 793

    Article  CAS  Google Scholar 

  17. Xie H., Fujii M. and Zhang X. (2005). Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass transf. 48: 2926

    CAS  Google Scholar 

  18. Yu W. and Choi S.U.S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids, a renovated Maxwell model. J. Nanopart. Res. 5: 16–171

    Article  Google Scholar 

  19. Buongiorno J. (2006). Convective transport in nanofluids. J. Heat transf. 128: 240–250

    Article  Google Scholar 

  20. Hamilton R.L. and Crosser O.K. (1962). Thermal conductivity of heterogeneous two-component systems.. I & EC Fundamentals 1: 187–191

    Article  CAS  Google Scholar 

  21. Xue Q.-Z. (2003). Model for effective conductivity of nanofluids. Phys. Lett. A 307: 313–317

    Article  CAS  Google Scholar 

  22. Kampmeyer P.M. (1952). The temperature dependence of viscosity for water and mercury. J. App. Phys. 23: 99–105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, M., Giannelis, E.P. Mechanism of heat transport in nanofluids. J Computer-Aided Mater Des 14, 109–117 (2007). https://doi.org/10.1007/s10820-006-9025-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9025-x

Keywords

Navigation