Skip to main content
Log in

Atomic Scale Chemo-mechanics of Silica: Nano-rod Deformation and Water Reaction

  • Published:
Journal of Computer-Aided Materials Design

Abstract

The notion of bond rupture as the initiation event leading to mechanical failure in a material system is well known. Less recognized but no less valid is that bond strain also fundamentally affects the chemical reactivity of the atoms involved in the bonding. This dual role of bond strain is clearly brought out in the present simulations. Stress–strain response of dry silica to the point of structural instability is studied using a classical inter-atomic potential model, whereas transition-state pathway sampling of water–silica reaction is performed using molecular orbital theory. Although not as accurate as possible from the standpoint of existing methods of simulation, the results nevertheless illustrate the physical insights into chemo-mechanical processes one can extract through multi-scale modeling and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Badro J., Barrat J.-L., Gillet P. (1996). Phys. Rev. Lett. 76(5):772

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Baëta R.D., Ashbee K.H.G. (1970). Phil. Mag. 22:625

    ADS  Google Scholar 

  3. Baëta R.D., Ashbee K.H.G. (1970). Phil. Mag. 22:601

    ADS  Google Scholar 

  4. Bartlett, R., McClellan, J., Greer, J. and Monaghan, S. J. Comput. Aided Mat. Design, this issue (2006).

  5. Benioff, M.R., Lazowska, E.D., et al., Computational science: ensuring America’s competitiveness. Report to the President, President’s Information Technology Advisory Committee, Washington, DC, June 2005. URL http://www.nitrd.gov/pitac/reports/.

  6. Binggeli N., Chelikowsky J.R. (1992). Phys. Rev. Lett. 69(15):2220

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Binggeli N., Keskar N.R., Chelikowsky J.R. (1994). Phys. Rev. B 49(5):3075

    Article  CAS  ADS  Google Scholar 

  8. Blacic J.D. (1975). Tectonophysics 27(3):271–294

    Article  CAS  ADS  Google Scholar 

  9. Campañá, C., Müser, M.H., Tse, J.S., Herzbach, D. and Schöffel, P., Phys. Rev. B, 70(22) (2004) 224101

    Google Scholar 

  10. Carter N.L., Christie J.M., Griggs D.T. (1961). J. Geophys. Res. 66:2518

    Google Scholar 

  11. Carter N.L., Christie J.M., Griggs D.T. (1964). J Geol 72:687

    CAS  ADS  Google Scholar 

  12. Chaplot S.L., Sikka S.K. (1993). Phys. Rev. B 47(10):5710

    Article  CAS  ADS  Google Scholar 

  13. Christie J.M., Griggs D.T., Carter N.L. (1964). J. Geol. 72:734

    Article  ADS  Google Scholar 

  14. Christie J.M., Heard H.C., LaMori P.N. (1964). Amer. J. Sci. 262:26

    Article  CAS  Google Scholar 

  15. de Leeuw N.H., Du Z.M., Li J., Yip S., Zhu T. (2003). Nano Lett 3(10):1347–1352

    Article  ADS  CAS  Google Scholar 

  16. Doukhan J.C. (1995). J. Phys. III 5(11):1809–1832

    Article  CAS  MathSciNet  Google Scholar 

  17. Du M.H., Kolchin A., Cheng H.P. (2003). J. Chem. Phys. 119(13):6418–6422

    Article  CAS  ADS  Google Scholar 

  18. El’Kin F.S., Brazhkin V.V., Khvostantsev L.G., Tsiok O.B., Lyapin A.G. (2002). JETP Lett 75(7):342–347

    Article  CAS  ADS  Google Scholar 

  19. Feuston B.P., Garofalini S.H. (1988). J. Chem. Phys. 89(9):5818–5824

    Article  CAS  ADS  Google Scholar 

  20. Gilman J.J. (2003). Electronic Basis of the Strength of Materials. Cambridge University Press, Cambridge

    Google Scholar 

  21. Ginhoven, R.M.V., Jonsson, H. and Corrales, L.R., Phys. Rev. B, 71(2) (2005) 024208

    Google Scholar 

  22. Ginhoven R.M.V., Jonsson H., Park B., Corrales L.R. (2005). J. Phys. Chem. B 109(21):10936–10945

    Article  PubMed  CAS  Google Scholar 

  23. Griggs D. (1974). J. Geophys. Res. 79(11):1653–1661

    CAS  ADS  Google Scholar 

  24. Griggs D.T. (1967). Geophys. J. Roy. Astr. S 14:19

    CAS  Google Scholar 

  25. Heggie M., Jones R. (1986). Philos. Mag. A 53(5):L65–L70

    CAS  ADS  Google Scholar 

  26. Heggie M., Jones R. (1987). Philos. Mag. Lett. 55(1):47–51

    CAS  ADS  Google Scholar 

  27. Heggie M.I., Jones R., Latham C.D., Maynard S.C.P., Tole P. (1992). Philos. Mag. B 65(3):463–471

    CAS  Google Scholar 

  28. Hemley, R.J., In Manghnanin, M.H. and Syono, Y., (Eds.), High-Pressure Research in Mineral Physics, Terra Scientific, Tokyo, 1987.

  29. Hemley R.J., Jephcoat A.P., Mao H.K., Ming L.C., Manghnani M.H. (1988). Nature 334(6177):52–54

    Article  CAS  ADS  Google Scholar 

  30. Henkelman G., Jónsson H. (2000). J. Chem. Phys. 113(22):9978–9985

    Article  CAS  ADS  Google Scholar 

  31. Hillig W.B., Charles R.J. (1964). Surfaces, stress-dependent surface reactions, and strength. In: Zackay V.F. (eds) High-Strength Materials. Wiley, New York, pp 682–705

    Google Scholar 

  32. Hobbs B.E. (1968). Tectonophysics 6:353

    Article  ADS  Google Scholar 

  33. Hobbs, B.E., McLaren, A.C. and Paterson, M.S., Plasticity of single crystals of quartz, In Heard, H.C., Borg, I.Y., Carter, N.L. and Raleigh, C.B., (Eds.), Flow and Fracture of Rocks (The Griggs Volume), Vol. 16 of Geophysical Monograph Series, American Geophysical Union, (1972) 29

  34. Hoover W.G. (1985). Phys. Rev. A 31(3):1695

    Article  PubMed  ADS  Google Scholar 

  35. Jones R., Oberg S., Heggie M.I., Tole P. (1992). Philos. Mag. Lett. 66(2):61–66

    CAS  ADS  Google Scholar 

  36. Jonsson, H., Mills, G. and Jacobsen, K.W., Nudged elastic band method for finding minimum energy paths of transitions, In Berne, B.J., Ciccotti, G. and Coker, D.F., (Eds.), Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, 1998, 385–404

  37. Karasiev, V., Trickey, S.B. and Harris, F., J. Comput. Aided Mat. Design, this issue (2006).

  38. Keskar N.R., Chelikovsky J.R. (1992). Nature 358:222

    Article  CAS  ADS  Google Scholar 

  39. Keskar, N.R. and Chelikowsky, J.R., Phys. Rev. B, 48(22) (1993) 16227.

    Google Scholar 

  40. Kingma K.J., Hemley R.J., Mao H.K., Veblen D.R. (1993). Phys. Rev. Lett. 70(25):3927–3930

    Article  PubMed  CAS  ADS  Google Scholar 

  41. Kingma K.J., Meade C., Hemley R.J., Mao H.K., Veblen D.R. (1993). Science 259(5095):666–669

    CAS  ADS  Google Scholar 

  42. Lacks D.J. (2000). Phys. Rev. Lett. 84(20):4629–4632

    Article  PubMed  CAS  ADS  Google Scholar 

  43. Laurence P.R., Hillier I.H. (2003). Comp. Mat. Sci. 28(1):63–75

    Article  CAS  Google Scholar 

  44. Lawn B.R. (1993). Fracture of Brittle Solids, 2nd edn. Cambridge University Press, Cambridige

    Google Scholar 

  45. Liao D. (2001). Atomistic Simulation of Strength and Deformation of Ceramic Materials. PhD thesis, MIT, Cambridge, MA

    Google Scholar 

  46. Lindsay C.G., White G.S., Freiman S.W., Wongng W. (1994). J. Am. Ceram. Soc. 77(8):2179–2187

    Article  CAS  Google Scholar 

  47. Mallik, A., Taylor, D., Runge, K., Dufty, J. and Cheng, H.-P., J. Comput. Aided Mat. Design, this issue (2006).

  48. Mcconnell J.D.C. (1997). Phase Transit 61(1–4):19–39

    CAS  MathSciNet  Google Scholar 

  49. McLaren A.C., Gerald J.D.F., Gerretsen J. (1989). Phys. Chem. Miner. 16(5):465–482

    Article  CAS  ADS  Google Scholar 

  50. McNeil L.E., Grimsditch M. (1992). Phys. Rev. Lett. 68(1):83–85

    Article  PubMed  CAS  ADS  Google Scholar 

  51. Michalske T.A., Bunker B.C. (1984). J. Appl. Phys. 56(10):2686–2693

    Article  CAS  ADS  Google Scholar 

  52. Michalske T.A. and Freiman S.W. (1982). Nature 295(5849):511–512

    Article  CAS  ADS  Google Scholar 

  53. Michalske T.A. and Freiman S.W. (1983). J. Am. Ceram. Soc 66(4):284–288

    Article  CAS  Google Scholar 

  54. Mukherjee, G.D., Vaidya, S.N. and Sugandhi, V., Phys. Rev. Lett., 87(19) (2001) 195501

    Google Scholar 

  55. Muralidharan, K., Mallik, A., Runge, K. and Deymier, P., J. Comput. Aided Mat. Design, this issue (2006).

  56. Muralidharan K., Simmons J.H., Deymier P.A. and Runge K. (2005). J. Non-Cryst. Solids 351(18):1532–1542

    Article  CAS  ADS  Google Scholar 

  57. Murashov V.V. (1998). Phys. Rev. B 57(10):5639

    Article  CAS  ADS  Google Scholar 

  58. Nosé S. (1984). Molec. Phys. 52(2):255

    Article  ADS  Google Scholar 

  59. Ochoa R., Swiler T.P. and Simmons J.H. (1991). J. Non-Cryst. Solids 128:57

    Article  CAS  ADS  Google Scholar 

  60. Oden, J.T., et al. Revolutionizing engineering science through simulation, Report, NSF Blue Ribbon Panel on Simulation-Based Engineering Science, Feb. 2006. URL edu/events/SBES_Final_Report.pdf.

  61. Oligschleger C. (1999). Phys. Rev. B 60(5):3182

    Article  CAS  ADS  Google Scholar 

  62. Parrinello M. and Rahman A. (1981). J. Appl. Phys. 52(12):7182

    Article  CAS  ADS  Google Scholar 

  63. Post A. and Tullis J. (1998). Tectonophysics 295:117

    Article  CAS  ADS  Google Scholar 

  64. Saika-Voivod, I., Sciortino, F., Grande, T. and Poole, P.H., Phys. Rev. E, 70(6) (2004) 061507

    Google Scholar 

  65. Sanders M.J., Leslie M. and Catlow C.R.A. J Chem Soc Chem Comm., (19) (1984) 1271–1273

  66. Stewart J.J.P. (2002). MOPAC 2002 Manual. Fujitsu Ltd., Tokyo

    Google Scholar 

  67. Subramanian S. (2001). Atomic-level deformation response of SiO2 under compression. Master’s thesis, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  68. Subramanian S. and Yip S. (2002). Comp. Mat. Sci. 23(1–4):116–123

    Article  CAS  Google Scholar 

  69. Svishchev I.M., Kusalik P.G. and Murashov V.V. (1997). Phys. Rev. B 55(2):721

    Article  CAS  ADS  Google Scholar 

  70. Swiler T.P., Simmons J.H. and Wright A.C. (1995). J. Non-Cryst. Solids 182(1–2):68–77

    Article  CAS  ADS  Google Scholar 

  71. Thomson R., Hsieh C. and Rana V. (1971). J. Appl. Phys. 42:3145–3160

    Article  ADS  Google Scholar 

  72. Trickey, S., Yip, S., Cheng, H.-P., Runge, K. and Deymier, P., J. Comput. Aided Mat. Design, this issue (2006).

  73. Tse J.S., Klug D.D. (1991). Phys. Rev. Lett. 67(25):3559–3562

    Article  PubMed  CAS  ADS  Google Scholar 

  74. Tse J.S. and Klug D.D. (1993). Phys. Rev. Lett. 70(2):174–177

    Article  PubMed  CAS  ADS  Google Scholar 

  75. Tse, J.S., Klug, D.D. and Allan, D. C., Phys. Rev. B, 51(22) (1995) 16392

  76. Tse, J.S., Klug, D.D., Page, Y.L. and Bernasconi, M., Phys. Rev. B 56(17) (1997) 10878

    Google Scholar 

  77. Tsuneyuki S., Matsui Y., Aoki H. and Tsukada M. (1989). Nature 339(6221):209–211

    Article  CAS  ADS  Google Scholar 

  78. Tullis, T.E. and Tullis, J., In Hobbs, B.E. and Heard, H.C., (Eds.), Mineral and Rock Deformation: Laboratory Studies, of AGU Geophysical Monograph, Vol. 39. American Geophysical Union, 1986, 297.

  79. Uemura Y. (1994). Phys. Rev. B 49(10):6528

    Article  CAS  ADS  Google Scholar 

  80. Uemura Y. (1995). Phys. Rev. B 51(10):6704

    Article  CAS  ADS  Google Scholar 

  81. van Beest B.W.H., Kramer G.J. and van Santen R.A. (1990). Phys. Rev. Lett. 64(16):1955–1958

    Article  PubMed  ADS  Google Scholar 

  82. Vashishta, P., Kalia, R.K., Rino, J.P. and Ebbsjo, I., Phys. Rev. B, 41(17) (1990) 12197–12209

    Google Scholar 

  83. Vineyard G.H. (1957). J. Phys. Chem. Solids 3:121–127

    Article  CAS  ADS  Google Scholar 

  84. Walsh T.R., Wilson M. and Sutton A.P. (2000). J. Chem. Phys. 113(20):9191–9201

    Article  CAS  ADS  Google Scholar 

  85. Watson, G.W. and Parker, S.C., Phys. Rev. B, 52(18) (1995) 13306

    Google Scholar 

  86. West J.K. and Hench L.L. (1994). J. Mater. Sci. 29(22):5808–5816

    Article  CAS  ADS  Google Scholar 

  87. Wiederhorn S.M. (1967). J. Am. Ceram. Soc. 50:407–414

    Article  CAS  Google Scholar 

  88. Wright A.C. (1993). J. Non-Cryst. Solids 159(3):264–268

    Article  CAS  ADS  Google Scholar 

  89. Yip S. (eds) (2005). Handbook of Materials Modeling. Springer, Dordrecht

    Google Scholar 

  90. Zhu C., Byrd R.H. and Nocedal J. (2005). ACM Trans. Math. Softw. 23(4):550–560

    Article  MathSciNet  Google Scholar 

  91. Zhu, T., Atomistic Characterization of Stress-Driven Configurational Instability and its Activation Mechanisms, PhD thesis, MIT, Cambridge, MA, May 2004.

  92. Zhu T., Li J., Lin X. and Yip S. (2005). J. Mech. Phys. Solids 53(7):1597–1623

    Article  CAS  MATH  ADS  Google Scholar 

  93. Zhu, T., Li, J. and Yip, S., Phys. Rev. Lett., 93(20) (2004) 205504.

  94. Zhu T., Li J., Yip S., Bartlett R.J., Trickey S.B. and de Leeuw N.H. (2003). Mol. Simulat. 29(10–11):671–676

    Article  CAS  Google Scholar 

  95. Zhu, W., Runge, K. and Trickey, S., J. Comput. Aided Mat. Design, this issue (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, E.C.C.M., Li, J., Liao, D. et al. Atomic Scale Chemo-mechanics of Silica: Nano-rod Deformation and Water Reaction. J Computer-Aided Mater Des 13, 135–159 (2006). https://doi.org/10.1007/s10820-006-9008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9008-y

Keywords

Navigation