Skip to main content
Log in

An integrated framework for multi-scale materials simulation and design

  • Published:
Journal of Computer-Aided Materials Design

Abstract

In this paper, we describe initial results of an ongoing research activity involving materials scientists, computer scientists, mathematicians, and physicists from academia, industry and a national laboratory. The present work aims to develop a set of integrated computational tools to predict the relationships among chemistry, microstructure and mechanical properties of multicomponent materials systems. It contains a prototype grid-enabled package for multicomponent materials design with efficient information exchange between structure scales and effective algorithms and parallel computing schemes within individual simulation/modeling stages. As part of our multicomponent materials design framework, this paper reports the materials simulation segment in developing materials design knowledgebase, which involves four major computational steps: (1) Atomic-scale first-principles calculations to predict thermodynamic properties, lattice parameters, and kinetic data of unary, binary and ternary compounds and solutions phases; (2) CALPHAD data optimization approach to compute thermodynamic properties, lattice parameters, and kinetic data of multicomponent systems; (3) Multicomponent phase-field approach to predict the evolution of microstructures in one to three dimensions (1–3D); and (4) Finite element analysis to generate the mechanical response from the simulated microstructure. These four stages are to be integrated with advanced discretization and parallel algorithms and a software architecture for distributed computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wolverton X.Y. Yan R. Vijayaraghavan V. Ozolins (2002) Acta Mater. 50 2187 Occurrence Handle10.1016/S1359-6454(01)00430-X Occurrence Handle1:CAS:528:DC%2BD38XjsFCksLs%3D

    Article  CAS  Google Scholar 

  2. T. Wang J. Zhu R.A. Mackay L.-Q. Chen Z.-K. Liu (2004) Metall Mater Trans. A 35 2315

    Google Scholar 

  3. Vaithyanathan, V., Wolverton, C. and Chen, L.Q., Phys. Rev. Lett., 88 (2002).

  4. G.B. Olson (1997) Science 277 1237 Occurrence Handle10.1126/science.277.5330.1237 Occurrence Handle1:CAS:528:DyaK2sXlslaitbY%3D

    Article  CAS  Google Scholar 

  5. Liu, Z.K., In:B.B. Clow, (Ed). ‘Magnesium Technology 2000’ Nashville, TN, USA, TMS, PA, USA, (2000) pp. 191–198.

  6. G.B. Olson (2001) Calphad 25 175 Occurrence Handle10.1016/S0364-5916(01)00041-4 Occurrence Handle1:CAS:528:DC%2BD3MXotFWqurc%3D

    Article  CAS  Google Scholar 

  7. Suh, N.P., The Principles of Design, Oxford University Press, 1990.

  8. C. Wolverton A. Zunger (1995) Phys. Rev. Lett. 75 3162 Occurrence Handle10.1103/PhysRevLett.75.3162 Occurrence Handle1:CAS:528:DyaK2MXovVGksr8%3D Occurrence Handle10059510

    Article  CAS  PubMed  Google Scholar 

  9. V. Ozolins C. Wolverton A.A. Zunger (1998) Phys. Rev. B 57 6427 Occurrence Handle10.1103/PhysRevB.57.6427 Occurrence Handle1:CAS:528:DyaK1cXhvVartLg%3D

    Article  CAS  Google Scholar 

  10. L. Kaufman H. Bernstein (1970) Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals Academic Press New York

    Google Scholar 

  11. N. Saunders A.P. Miodownik (1998) Calphad (Calculation of Phase Diagrams): A Comprehensive Guide Pergamon Oxford, New York

    Google Scholar 

  12. J.W. Cahn J.E. Hilliard (1958) J. Chem. Phys. 28 258 Occurrence Handle1:CAS:528:DyaG1cXkvVKrsg%3D%3D

    CAS  Google Scholar 

  13. L.Q. Chen (2002) Ann. Rev. Mater Res. 32 113 Occurrence Handle10.1146/annurev.matsci.32.112001.132041 Occurrence Handle1:CAS:528:DC%2BD38Xos1Gjurk%3D

    Article  CAS  Google Scholar 

  14. J.W. Cahn (1961) Acta Metall. 9 795 Occurrence Handle10.1016/0001-6160(61)90182-1 Occurrence Handle1:CAS:528:DyaF38Xnt1eqsQ%3D%3D

    Article  CAS  Google Scholar 

  15. S.M. Allen J.W. Cahn (1977) J. Phys C7 C7–51

    Google Scholar 

  16. S.A. Langer E. Fuller W.C. Carter (2001) Comput. Sci. Eng. 3 15 Occurrence Handle10.1109/5992.919261

    Article  Google Scholar 

  17. Foster, I., Kesselman, C., Nick, J., Tuecke, S. and Group, O.G.S.I.W., The physiology of the grid: An Open Grid Services Architecture for distributed systems integration, Global Grid Forum, June (22) 2002.

  18. Sandholm, T. and Gawor, J., Globus toolkit 3 core - A grid service container framework., http://www-unix.globus.org/core/, 2003.

  19. Sun Microsystems Inc., Java server pages, http://java.sun.com/products/jsp.

  20. Sun Microsystems Inc., Java servlet technology, http://java.sun.com.

  21. World Wide Web Consoritium, Document object model, http://www.w3.org/DOM/, 2003.

  22. Teranishi, K., Raghavan, P. and Liu, Z.-K., ‘Towards A Grid Enabled System for Multicomponent Materials Design’, (IEEE International Symposium on Cluster Computing and the Grid, Chicago, Illinois) in press, 2004.

  23. B. Jansson (1984) Evaluation of Parameters in Thermochemical Models Using Different Types of Experimental Data Simultaneously, TRITA-MAC-0234 Royal Institute of Technology Stockholm

    Google Scholar 

  24. J.O. Andersson T. Helander L.H. Hoglund P.F. Shi B. Sundman (2002) Calphad 26 273 Occurrence Handle10.1016/S0364-5916(02)00037-8 Occurrence Handle1:CAS:528:DC%2BD38XmvFGiu70%3D

    Article  CAS  Google Scholar 

  25. S.L. Chen K.C. Chou Y.A. Chang (1993) ArticleTitleOn a New Strategy For Phase-Diagram Calculation .1 Basic Principles, Calphad-Comp. Coupl. Phase Diag. Thermochem. 17 237

    Google Scholar 

  26. S.L. Chen S. Daniel F. Zhang Y.A. Chang X.Y. Yan F.Y. Xie R. Schmid-Fetzer W.A. Oates (2002) ArticleTitleThe PANDAT software package and its applications, Calphad-Comp Coupl. Phase Diag. Thermochem. 26 175 Occurrence Handle1:CAS:528:DC%2BD38XmvFGiu74%3D

    CAS  Google Scholar 

  27. L.Q. Chen C. Wolverton V. Vaithyanathan Z.K. Liu (2001) MRS Bull. 26 197 Occurrence Handle1:CAS:528:DC%2BD3MXis1eqtLk%3D

    CAS  Google Scholar 

  28. S.Y. Hu L.Q. Chen (2001) Acta Mater. 49 1879 Occurrence Handle10.1016/S1359-6454(01)00118-5 Occurrence Handle1:CAS:528:DC%2BD3MXjs1ykurw%3D

    Article  CAS  Google Scholar 

  29. A.G. Khachaturyan S. Semenovskaya T. Tsakalakos (1995) Phys. Rev. B 52 1 Occurrence Handle10.1103/PhysRevB.52.15909

    Article  Google Scholar 

  30. C. Wolverton (2001) Acta Mater. 49 3129 Occurrence Handle10.1016/S1359-6454(01)00229-4 Occurrence Handle1:CAS:528:DC%2BD3MXmtVOlsL0%3D

    Article  CAS  Google Scholar 

  31. C. Wolverton (1999) Philos. Mag. Lett. 79 683 Occurrence Handle10.1080/095008399176724 Occurrence Handle1:CAS:528:DyaK1MXmtlaitLk%3D

    Article  CAS  Google Scholar 

  32. S. Muller C. Wolverton L.W. Wang A. Zunger (1999) Phys. Rev. B 60 16448 Occurrence Handle10.1103/PhysRevB.60.16448 Occurrence Handle1:CAS:528:DC%2BD3cXislGquw%3D%3D

    Article  CAS  Google Scholar 

  33. A. Zunger S.H. Wei L.G. Ferreira J.E. Bernard (1990) Phys. Rev. Lett. 65 353 Occurrence Handle10.1103/PhysRevLett.65.353 Occurrence Handle1:CAS:528:DyaK3cXlt1Sqtrc%3D Occurrence Handle10042897

    Article  CAS  PubMed  Google Scholar 

  34. C. Jiang C. Wolverton J. Sofo L.-Q. Chen Z.-K. Liu (2004) Phys. Rev. B 69 214202 Occurrence Handle10.1103/PhysRevB.69.214202

    Article  Google Scholar 

  35. G. Kresse J. Furthmuller (1996) Phys. Rev. B. 54 11169 Occurrence Handle10.1103/PhysRevB.54.11169 Occurrence Handle1:CAS:528:DyaK28Xms1Whu7Y%3D

    Article  CAS  Google Scholar 

  36. G. Kresse J. Furthmüller (1996) Comput. Mater. Sci. 6 15 Occurrence Handle10.1016/0927-0256(96)00008-0 Occurrence Handle1:CAS:528:DyaK28XmtFWgsrk%3D

    Article  CAS  Google Scholar 

  37. L. Kaufman H. Nesor (1978) Calphad 2 325 Occurrence Handle10.1016/0364-5916(78)90020-2 Occurrence Handle1:CAS:528:DyaE1MXhsFGmur4%3D

    Article  CAS  Google Scholar 

  38. J.L. Murray (1985) Int. Met. Rev. 30 211 Occurrence Handle1:CAS:528:DyaL28Xnt12rsQ%3D%3D

    CAS  Google Scholar 

  39. J.L. Murray (1994) Al-Cu (Aluminium–Copper) P.R. Subramanian D.J. Chakrabarti D.E. Laughlin (Eds) Phase Diagrams of Binary Copper Alloys ASM International Materials Park, OH 18–40

    Google Scholar 

  40. Ansara, I., Dinsdale, A.T. and Rand, M.H., (Eds). COST 507: Thermochemical Database for Light Metal Alloys, 2 European Commission, 1998.

  41. A. Walle Particlevan de M. Asta G. Ceder (2002) Calphad 26 539 Occurrence Handle10.1016/S0364-5916(02)80006-2

    Article  Google Scholar 

  42. Hu, S., Ph.D. Thesis, Phase-field Models of Microstructure Evolution in Systems with Elastic Inhomogeneity and Defects, Penn State University 2004.

  43. M. Emelianenko, Z.K. Liu, and Q. Du, Comp. Mat. Sci., in press (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-K. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZK., Chen, LQ., Raghavan, P. et al. An integrated framework for multi-scale materials simulation and design. J Computer-Aided Mater Des 11, 183–199 (2004). https://doi.org/10.1007/s10820-005-3173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-005-3173-2

Keywords

Navigation