Skip to main content
Log in

An Approach for Robust Design of Reactive Power Metal Mixtures Based on Non-deterministic Micro-scale Shock Simulation

  • Published:
Journal of Computer-Aided Materials Design

Abstract

In this paper, we propose a method for the robust design of materials involving processes that are computationally intensive and selectively random. The material system considered is a reactive particle metal mixture (RPMM) composed of aluminum and iron oxide (Al+Fe2O3). Shock simulations of discrete energetic particle mixtures are performed to predict the system’s mechanical and thermal behavior that will be used by a designer of the mixture to achieve robust micro-scale reaction initiation. The method used to predict the behavior of the material system is the robust concept exploration method with error margin index (RCEM-EMI). An error margin index is a mathematical construct indicating the location of mean system performance and the spread of this performance considering both variability in design variables and models of the system. Variability in responses of a model may be due to system variation that cannot be easily parameterized in terms of noise factors. Furthermore, lack of data, due to the cost of simulations and experiments, leads to uncertain parameters in empirical models. System response variability and parameter uncertainty in an empirical model are estimated in a computationally efficient manner to formulate the error margin indices, which are then leveraged to search for ranged sets of design specifications. Finally, the RCEM-EMI is illustrated for designing a RPMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Benson (1994) Model. Simul. Mater. Sci. Eng. 2 535 Occurrence Handle10.1088/0965-0393/2/3A/008

    Article  Google Scholar 

  2. D.J. Benson (1995) Comput. Mech. 15 558

    Google Scholar 

  3. D.J. Benson P. Conley (1999) Model. Simul. Mater. Sci. Eng. 7 333 Occurrence Handle10.1088/0965-0393/7/3/304

    Article  Google Scholar 

  4. D.J. Benson (1995) Wave Motion 21 85 Occurrence Handle10.1016/0165-2125(94)00044-6

    Article  Google Scholar 

  5. S. Torquato (1991) Appl. Mech. Rev. 44 37

    Google Scholar 

  6. S. Kirkpatric (1984) J. Stat. Phys. 34 975 Occurrence Handle10.1007/BF01009452

    Article  Google Scholar 

  7. D.J. Benson (1992) Comp. Methods Appl. Mech. Eng. 99 235 Occurrence Handle10.1016/0045-7825(92)90042-I

    Article  Google Scholar 

  8. S.S. Isukapalli A. Roy P.G. Georgopoulos (1998) Risk Analysis 18 351 Occurrence Handle9722454

    PubMed  Google Scholar 

  9. E. Nikoladis (Eds) (2005) Types of Uncertainty in Design Decision Making Vol CRC Press New York 8.1–8.20

    Google Scholar 

  10. M.C. Kennedy A. O’Hagan (2000) Biometrika 87 1 Occurrence Handle10.1093/biomet/87.1.1 Occurrence HandleMR1766824

    Article  MathSciNet  Google Scholar 

  11. Qian Z., Seepersad C.C., Joseph V.R., Wu C.F.J., Allen J.K., Proceedings of ASME DETC04. Salt Lake City, UT, 2004, DETC2004/DAC57486.

  12. R.J. Brooks A.M. Tobias (1996) Math. Comput. Model. 24 1 Occurrence Handle10.1016/0895-7177(96)00103-3

    Article  Google Scholar 

  13. Sargent R.G., Proceedings of 2003 Winter Simulation Conferences, New Orleans, LA, 2003, pp. 37–48.

  14. Jin R., Du X., Chen W., J. Strut. Multidisciplinary Optim., (2001).

  15. T.W. Simpson J.D. Peplinski P.N. Koch J.K. Allen (2001) Eng. Comp. 17 129

    Google Scholar 

  16. G. Taguchi (Eds) (1993) Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream ASME Press New York

    Google Scholar 

  17. A. Parkinson C. Sorensen N. Pourhassan (1993) ASME J. Mech. Des. 115 74

    Google Scholar 

  18. S. Sundaresan K Ishii D.R. Houser (1995) Eng. Optim. 24 101

    Google Scholar 

  19. W. Chen J.K. Allen K.-L. Tsui F. Mistree (1996) ASME J. Mech. Des. 118 478

    Google Scholar 

  20. W.J. Welch T.-K. Yu S.M. Kang J. Sacks (1990) J. Qual. Technol. 22 15

    Google Scholar 

  21. A.C. Shoemaker K.L. Tsui J. Wu (1991) Technometrics 33 415

    Google Scholar 

  22. G.E.P. Box (1988) Technometrics 30 1 Occurrence HandleMR930439

    MathSciNet  Google Scholar 

  23. G.G. Vining R.H. Myers (1990) J. Qual. Teahnol. 22 38

    Google Scholar 

  24. K.-L. Tsui (1992) IIE Trans. (Institute of Industrial Engineers) 24 44

    Google Scholar 

  25. W. Chen (1995) Ph.D. dissertation, School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia

    Google Scholar 

  26. W. Chen T.W. Simpson J.K. Allen F. Mistree (1999) Eng. Optim. 31 615

    Google Scholar 

  27. M. Davidian R.J. Carroll (1987) J. Am. Stat. Assoc. 82 1079

    Google Scholar 

  28. J. Engel A.F. Huele (1996) Technometrics. 38 365

    Google Scholar 

  29. G.E.P. Box R.D. Meyer (1986) Technometrics. 28 19 Occurrence HandleMR824729

    MathSciNet  Google Scholar 

  30. V.N. Nair D. Pregibon (1988) Technometrics. 30 247 Occurrence HandleMR959528

    MathSciNet  Google Scholar 

  31. J.M. Grego (1993) J. Qual. Technol. 25 288

    Google Scholar 

  32. Chan L.K., Mak T.K. (1995). Appl. Stat. J. Roy. Stat. Soc. Ser. C. 44

  33. G. Gong F.J. Samaniego (1981) Ann. Stat. 9 861

    Google Scholar 

  34. M. Aitkin (1987) Appl. Stat. 36 332

    Google Scholar 

  35. T. Amemiya (1977) J. Economet. 6 365 Occurrence Handle10.1016/0304-4076(77)90006-9

    Article  Google Scholar 

  36. J.D. Jobson W.A. Fuller (1980) J. Am. Stat. Assoc. 75 176

    Google Scholar 

  37. H. Glejser (1969) J. Am. Stat. Assoc. 64 316

    Google Scholar 

  38. H. Theil (Eds) (1971) Principles of Econometrics John Wiley New York

    Google Scholar 

  39. A.C. Harvey (1976) Econometrica. 44 461

    Google Scholar 

  40. J. Neter M.H. Kutner C.J. Nachtsheim W. Wasserman (Eds) (1996) Applied Linear Statistical Models IRWIN Chicago

    Google Scholar 

  41. Mistree F., Hughes O.F., Bras B.A. (1993). Structural Optimization: Status and Promise. pp. 247–286, M. P. Kamat, Ed.

  42. J.R. Asay M. Shahinpoor (Eds) (1993) High-Pressure Shock Compression of Solids Springer-Verlag New York

    Google Scholar 

  43. F.D. Murnaghan (1937) Am. J. Math. 49 235

    Google Scholar 

  44. J.R. Klepaczko T. Sasaki T. Kurokawa (1993) Trans, Japan Soc. Aero. Space Sci. 36 170

    Google Scholar 

  45. O.A. Hasan M.C. Boyce (1995) Polym. Eng. Sci. 35 331 Occurrence Handle10.1002/pen.760350407

    Article  Google Scholar 

  46. A.G. Merzhanov (1966) Combust. Flame. 10 341 Occurrence Handle10.1016/0010-2180(66)90041-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. McDowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HJ., Austin, R., Allen, J.K. et al. An Approach for Robust Design of Reactive Power Metal Mixtures Based on Non-deterministic Micro-scale Shock Simulation. J Computer-Aided Mater Des 12, 57–85 (2005). https://doi.org/10.1007/s10820-005-1056-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-005-1056-1

Keywords:

Navigation