Skip to main content
Log in

Growth and reproductive responses of the conchocelis phase of Pyropia hollenbergii (Bangiales, Rhodophyta) to light and temperature

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Effects of light and temperature on conchocelis growth of Pyropia hollenbergii were evaluated with the hypothesis that conchocelis phase is most adapted to environmental extremes as compared to the gametophyte phase. Growth rates were measured weekly over a 3-month experimental period. Our results have shown that the best growth rate was 6.4 to 7.5 % area day−1 at 25 °C, at photon fluence rates between 50 and 150 μmol photons m−2 s−1 and at a photoperiod of 15:9 h L: D. The upper temperature tolerance limit of Py. hollenbergii was at 33 °C at a photon fluence rate between 10 and 50 μmol photons m−2 s−1 and photoperiods of 9:15 and 12:12 h L:D. At a temperature of 5 °C, growth was inhibited (<0.5 % area day−1), but no mortality was observed. Archeospores were detected at 5–35 °C. Maximum archeospore production was observed at 5–10 °C, 50–150 μmol photons m−2 s−1, and at 9:15 h L:D. The highest number of conchosporangia was detected at 15–20 °C, 100–150 μmol photons m−2 s−1, and at 15:9 h L:D. The conchocelis phase of Py. hollenbergii is the critical perennating phase and is adapted to survive the highest temperatures in its habitat in the Gulf of California. The monospore and conchosporangium production is controlled by the combination of the temperatures and photon fluence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez-Borrego S (2010) Physical, chemical, and biological oceanography of the Gulf of California. In: Brusca RC (ed) The Gulf of California: biodiversity and conservation. University of Arizona Press, Tucson, pp 24–48

    Google Scholar 

  • Andersen RA (2005) Algal culturing techniques. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Ávila M, Santelices B, McLachlan J (1986) Photoperiod and temperature regulation of the life history of Porphyra columbina (Rhodophyta, Bangiales) from central Chile. Can J Bot 64:1867–1872

    Article  Google Scholar 

  • Blanco-Betancourt R, Pacheco-Ruíz I, Guzmán-Calderón JM, Zertuche-González JA, Chee-Barragan A, Martínez-Díaz de León A, Gálvez-Telles A, López-Vivas JM (2004) Base de datos de la temperatura del agua de mar en seis bahías de la costa noroccidental del Golfo de California, México. Reporte Tecnico 2004(1): 1–35 Instituto de Investigaciones Oceanológicas- UABC, http://iio.ens.uabc.mx/Publicaciones/Reportes_tecnicos/reporte-tecnico-2004-1.pdf. Accessed 4 May 2010

  • Cordero PAJ (1974) Phycological observations I. Genus Porphyra of the Philippines, its species and their occurrences. Bull Jpn Soc Phycol 22:134–142

    Google Scholar 

  • Dawson EY (1953) Marine red algae of Pacific Mexico. Part 1. Bangiales to Corallinaceae subf. Corallinoideae. Allan Hancock Pac Exp 17:1–239

    Google Scholar 

  • Hollenberg GJ (1958) Phycological notes II. Bull Torrey Bot Club 85:63–69

    Article  Google Scholar 

  • Holmes MJ, Brodie J (2004) Morphology, seasonal phenology and observations on some aspects of the life history in culture of Porphyra dioica (Bangiales, Rhodophyta) from Devon, UK. Phycologia 43:176–188

    Article  Google Scholar 

  • Israel A, Katz S, Dubinsky Z, Merrill JE, Friedlander M (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11:447–453

    Article  Google Scholar 

  • Johnson ME, Ledesma-Vasquez J (2009) Atlas of coastal ecosystems in the western Gulf of California. The University of Arizona Press, Tucson

    Google Scholar 

  • Kapraun DF, Lemus AJ (1987) Field and culture studies of Porphyra spiralis var. amplifolia Oliveira Filho et Coll (Bangiales, Rhodophyta) from Isla de Margarita, Venezuela. Bot Mar 30:483–490

    Article  Google Scholar 

  • Katz S, Kizner Z, Dubinsky Z, Friedlander M (2000) Responses of Porphyra linearis (Rhodophyta) to environmental factors under controlled culture conditions. J Appl Phycol 12:535–542

    Article  Google Scholar 

  • Kim N-G (1999) Culture studies of Porphyra dentata and P. pseudolinearis (Bangiales, Rhodophyta), two dioecious species from Korea. Hydrobiologia 398/399:127–135

  • Kim DH, Notoya M (2001) Life history of Porphyra koreana (Bangiales, Rhodophyta) from Korea in culture. Proc Intl Seaweed Symp 17:435–442

    Google Scholar 

  • Krishnamurthy V (1972) A revision of the species of the algal Genus Porphyra occurring on the Pacific Coast of North America. Pac Sci 26:24–49

    Google Scholar 

  • Kurogi M (1972) Systematics of Porphyra in Japan. In: Abbott IA, Kurogi M (eds) Contributions to the systematics of benthic marine algae of the North Pacific. Japanese Society of Phycology, Japan, pp 167–185

    Google Scholar 

  • Lewin J (1966) Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1–12

    Article  CAS  Google Scholar 

  • Lu S, Yarish C (2011) Interaction of photoperiod and temperature in the development of conchocelis of Porphyra purpurea (Rhodophyta:Bangiales). J Appl Phycol 23:89–96

    Article  Google Scholar 

  • Notoya M, Nagaura K (1998) Life history and growth of the epiphytic thallus of Porphyra lacerata (Bangiales, Rhodophyta) in culture. Algae 13:207–211

    Google Scholar 

  • Pacheco-Ruíz I (1999) Historia de vida de Chondracanthus squarrulosus (Gigartinales, Rhodophyta) en la costa noroeste del Golfo de California. PhD, dissertation, Universidad Autónoma de Baja California, Ensenada, México,123 pp

  • Pereira R, Yarish C (2010) The role of Porphyra in sustainable culture systems: physiology and applications. In: Israel A, Einav R (eds) Role of seaweeds in a globally changing environment. Springer, London, pp 339–354

    Chapter  Google Scholar 

  • Pereira R, Sousa-Pinto I, Yarish C (2004) Field and culture studies of the life history of Porphyra dioica (Bangiales, Rhodophyta) from Portugal. Phycologia 43:756–767

    Article  Google Scholar 

  • Pereira R, Kraemer GP, Yarish C, Sousa-Pinto I (2008) Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions. Eur J Phycol 43:107–118

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae. Jap Soc Plant Physiol, Hakone, Japan, pp 63–75

    Google Scholar 

  • Sahoo DB, Baweja P, Kushwah N (2006) Developmental studies in Porphyra vietnamensis: a high-temperature resistant species from the Indian Coast. J Appl Phycol 18:279–286

    Article  Google Scholar 

  • Sidirelli-Wolff M (1992) The influence of temperature, irradiance and photoperiod on the reproductive life history of Porphyra leucosticta (Bangiales, Rhodophyta) in laboratory culture. Bot Mar 35:251–257

    Article  Google Scholar 

  • SigmaStat (2006) Statistical software. Version 3.5, Systat Software, Inc

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman & Co, New York

    Google Scholar 

  • Stekoll SM, Lin R, Lindstrom SC (1999) Porphyra cultivation in Alaska: conchocelis growth of three indigenous species. Hydrobiologia 398/399:291–297

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Huwang MS, Choi H-G, Norio-Kikuchi MM, Oliveira MC, Farr T, Neefus CD, Mols-Mortensen A, Milstein D, Müller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151

    Article  Google Scholar 

  • Tanaka T (1952) The systematic study of the Japanese Protoflorideae. Mem Fac Fish Kagoshima Univ 2:1–92

    Google Scholar 

  • Varela-Álvarez E, Stengel DB, Guiry MD (2004) The use of image processing in assessing conchocelis growth and conchospore production in Porphyra linearis. Phycologia 43:282–287

    Article  Google Scholar 

  • Waaland JR, Dickson LG, Duffield CS (1990) Conchospore production and seasonal occurrence of some Porphyra species (Bangiales, Rhodophyta) in Washington State. Hydrobiologia 204/205:453–459

  • Yarish C, Lee KW, Edwards P (1979) Short communication. An improved apparatus for the culture under varying regimes of temperature and light intensity. Bot Mar 22:395–397

    Google Scholar 

  • Yarish C, Breeman AM, Van den Hoek C (1984) Temperature, light, and photoperiod responses of some Northeast American and West European endemic rhodophytes in relation to their geographic distribution. Helgol Meeresunters 38:273–304

    Article  Google Scholar 

  • Yarish C, Kirkman H, Lüning K (1987) Lethal exposure times and preconditioning to upper temperature limits of some temperate North Atlantic red algae. Helgol Meeresunters 41:323–327

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Jersey, Prentice Hall New

    Google Scholar 

  • Zertuche-González JA (1989) Macroalgas y el desarrollo de su cultivo. In: de la Rosa-Vélez J, González-Farias F (eds) Temas de Oceanografía Biológica en México. UABC, México, pp 319–337

    Google Scholar 

Download references

Acknowledgments

López-Vivas, J.M. acknowledges the support of CONACYT scholarship (157780) for PhD studies. This study was supported by the Mexican Council for the Sciences and Technology (CONACYT-50173Q) and the Autonomous University of Baja California (UABC-0572). We thank the support of grants to Charles Yarish from the Connecticut Sea Grant College Program and the National Marine Aquaculture Initiative (NOAA, U.S. DOC) and US-AID, TIES program between the Universidad Autónoma de Baja California and the University of Connecticut (UABC-UCONN). Thanks to Alberto Gálvez T. and Biology students at UABC and personnel from UABCS herbarium and UCONN Laboratory for their technical assistance and support during the field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Riosmena-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Vivas, J.M., Riosmena-Rodríguez, R., de la Llave, A.A.JG. et al. Growth and reproductive responses of the conchocelis phase of Pyropia hollenbergii (Bangiales, Rhodophyta) to light and temperature. J Appl Phycol 27, 1561–1570 (2015). https://doi.org/10.1007/s10811-014-0434-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0434-z

Keywords

Navigation