Skip to main content
Log in

An Electrophysiological Investigation of Interhemispheric Transfer Time in Children and Adolescents with High-Functioning Autism Spectrum Disorders

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Little is known about the functional impact of putative deficits in white-matter connectivity across the corpus callosum (CC) in individuals with autism spectrum disorders (ASDs). We utilized the temporal sensitivity of event-related potentials to examine the interhemispheric transfer time (IHTT) of basic visual information across the CC in youth with high-functioning ASD relative to healthy controls. We conducted two experiments: a visual letter matching experiment (n = 46) and a visual picture matching experiment, (n = 48) and utilized both electrophysiological (N1 and P1 amplitudes and latencies) and behavioral [response times (RTs), error rates] indices of IHTT. There were no significant group differences on either experiment for RTs, error rates, or N1 and P1 latencies, suggesting that on basic tasks the timing of information flow across the CC may not be altered in high functioning ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, A. L., Lee, J. E., Lazar, M., Boudos, R., DuBray, M. B., Oakes, T. R., et al. (2007). Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage, 34, 61–73. doi:10.1016/j.neuroimage.2006.08.032.

    Article  PubMed  Google Scholar 

  • Anderson, J. S., Druzgal, T. J., Froehlich, A., DuBray, M. B., Lange, N., Alexander, A. L., et al. (2011a). Decreased interhemispheric functional connectivity in autism. Cerebral Cortex, 21, 1134–1146. doi:10.1093/cercor/bhq190.

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J., Cariello, A. N., et al. (2011b). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134, 3742–3754. doi:10.1093/brain/awr263.

    Article  PubMed  Google Scholar 

  • Banich, M. T., & Brown, W. S. (2000). A life-span perspective on interaction between the cerebral hemispheres. Developmental Neuropsychology, 18, 1–10.

    Article  PubMed  Google Scholar 

  • Banich, M. T., Passarotti, A. M., White, D. A., Nortz, M. J., & Steiner, R. D. (2000). Interhemispheric interaction during childhood: II. Children with early-treated phenylketonuria. Developmental Neuropsychology, 18, 53–71. doi:10.1207/S15326942DN1801_4.

    Article  PubMed  Google Scholar 

  • Barnea-Goraly, N., Lotspeich, L. J., & Reiss, A. L. (2010). Similar white matter aberrations in children with autism and their unaffected siblings: A diffusion tensor imaging study using tract-based spatial statistics. Archives of General Psychiatry, 67, 1052–1060. doi:10.1001/archgenpsychiatry.2010.123.

    Article  PubMed  Google Scholar 

  • Barnett, K. J., & Kirk, I. J. (2005). Lack of asymmetrical transfer for linguistic stimuli in schizophrenia: An ERP study. Clinical Neurophysiology, 116, 1019–1027. doi:10.1016/j.clinph.2004.12.008.

    Article  PubMed  Google Scholar 

  • Baruth, J. M., Casanova, M. F., Sears, L., & Sokhadze, E. (2010). Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Translational Neuroscience, 1, 177–187. doi:10.2478/v10134-010-0024-9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24, 9228–9231. doi:10.1523/JNEUROSCI.3340-04.2004.

    Article  PubMed  Google Scholar 

  • Betancur, C. (2011). Etiological heterogenity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Research, 1380, 42–77. doi:10.1016/j.brainres.2010.11.078.

    Article  PubMed  Google Scholar 

  • Birmaher, B., Brent, D. A., Chiappetta, L., Bridge, J., Monga, S., & Baugher, M. (1999). Psychometric properties of the screen for child anxiety related emotional disorders (SCARED): A replication study. Journal of the American Academy of Child and Adolescent Psychiatry, 38, 1230–1236.

    Article  PubMed  Google Scholar 

  • Brown, W. S., Larson, E. B., & Jeeves, M. A. (1994). Directional asymmetries in interhemispheric transmission time: Evidence from visual evoked potentials. Neuropsychologia, 32, 439–448.

    Article  PubMed  Google Scholar 

  • Clark, V. P., & Hillyard, S. A. (1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of Cognitive Neuroscience, 8, 387–402. doi:10.1162/jocn.1996.8.5.387.

    Article  PubMed  Google Scholar 

  • Clayson, P. E., Baldwin, S. A., & Larson, M. J. (2013). How does noise affect amplitude and latency measurement of event-related potentials (ERPs)? A methodological critique and simulation study. Psychophysiology, 50, 174–186. doi:10.1111/psyp.12001.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J. A., Kennedy, D. P., et al. (2007). Mapping early brain development in autism. Neuron, 56, 399–413. doi:10.1016/j.neuron.2007.10.016.

    Article  PubMed  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi:10.1016/j.jneumeth.2003.10.009.

    Article  PubMed  Google Scholar 

  • Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15, 95–111. doi:10.1002/hbm.10010.

    Article  PubMed  Google Scholar 

  • Dien, J., Franklin, M. S., & May, C. J. (2006). Is “Blank” a suitable neutral prime for event-related potential experiments? Brain and Language, 97, 91–101. doi:10.1016/j.bandl.2005.08.002.

    Article  PubMed  Google Scholar 

  • Dien, J., Michelson, C. A., & Franklin, M. S. (2010). Separating the visual sentence N400 effect from the P400 sequential expectancy effect: Cognitive and neuroanatomical implications. Brain Research, 1355, 126–140. doi:10.1016/j.brainres.2010.07.099.

    Article  PubMed  Google Scholar 

  • Dien, J., & Santuzzi, A. M. (2005). Principal components analysis of event-related potential datasets. In T. Handy (Ed.), Event-related potentials: A methods handbook. Cambridge: MIT Press.

    Google Scholar 

  • Eapen, V. (2011). Genetic basis of autism: Is there a way forward? Current Opinion in Psychiatry, 24, 226–236. doi:10.1097/YCO.0b013e328345927e.

    Article  PubMed  Google Scholar 

  • Eliassen, J. C., Baynes, K., & Gazzaniga, M. S. (2000). Anterior and posterior callosal contributions to simultaneous bimanual movements of the hands and fingers. Brain: A Journal of Neurology, 123, 2501–2511. doi:10.1093/brain/123.12.2501.

    Article  Google Scholar 

  • Fabri, M., Polonara, G., Del Pesce, M., Quattrini, A., Salvolini, U., & Manzoni, T. (2001). Posterior corpus callosum and interhemispheric transfer of somatosensory information: An fMRI and neuropsychological study of a partially callosotomized patient. Journal of Cognitive Neuroscience, 13, 1071–1079. doi:10.1162/089892901753294365.

    Article  PubMed  Google Scholar 

  • Gorrie, C., Duflou, J., Brown, J., Gibson, T., & Waite, P. M. (2001). Extent and distribution of vascular brain injury in pediatric road fatalities. Journal of Neurotrauma, 18, 849–860. doi:10.1089/089771501750451776.

    Article  PubMed  Google Scholar 

  • Hagelthorn, K. M., Brown, W. S., Amano, S., & Asarnow, R. (2000). Normal development of bilateral field advantage and evoked potential interhemispheric transmission time. Developmental Neuropsychology, 18, 11–31. doi:10.1207/S15326942DN1801_2.

    Article  PubMed  Google Scholar 

  • Hong, S., Ke, X., Tang, T., Hang, Y., Chu, K., Huang, H., et al. (2011). Detecting abnormalities of corpus callosum connectivity in autism using magnetic resonance imaging and diffusion tensor tractography. Psychiatry Research: Neuroimaging, 194, 333–339. doi:10.1016/j.pscychresns.2011.03.009.

    Article  PubMed  Google Scholar 

  • Iwabuchi, S. J., & Kirk, I. J. (2009). Atypical interhemispheric communication in left-handed individuals. NeuroReport, 20, 166–169. doi:10.1097/WNR.0b013e32831f1cbb.

    Article  PubMed  Google Scholar 

  • Junghöfer, M., Elbert, T., Tucker, D. M., & Braun, C. (1999). The polar average reference effect: A bias in estimating the head surface integral in EEG recording. Clinical Neurophysiology, 110, 1149–1155.

    Article  PubMed  Google Scholar 

  • Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17, 951–961. doi:10.1093/cercor/bhl006.

    Article  PubMed  Google Scholar 

  • Kana, R. K., Keller, K., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks. Biological Psychiatry, 62, 198–206. doi:10.1016/j.biopsych.2006.08.004.

    Article  PubMed  Google Scholar 

  • Kana, R. K., Libero, L. E., & Moore, M. S. (2011). Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Physics of Life Reviews, 8, 410–437. doi:10.1016/j.plrev.2011.10.001.

    Article  PubMed  Google Scholar 

  • Keller, T. A., Kana, R. K., & Just, M. A. (2007). A developmental study of the structural integrity of white matter in autism. Neuroreport, 18, 23–27.

    Article  PubMed  Google Scholar 

  • Keselman, H. J., Wilcox, R. R., & Lix, L. M. (2003). A generally robust approach to hypothesis testing in independent and correlated groups designs. Psychophysiology, 40, 586–596. doi:10.1037/1082-989X.13.2.110.

    Article  PubMed  Google Scholar 

  • Kleinhans, N. M., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin, R., Johnson, L. C., et al. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131, 1000–1012. doi:10.1093/brain/awm334.

    Article  PubMed  Google Scholar 

  • Kumar, A., Sundaram, S. K., Sivaswamy, L., Behen, M. E., Makki, M. I., & Ager, J. (2010). Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cerebral Cortex, 20, 2103–2113. doi:10.1093/cercor/bhp278.

    Article  PubMed  Google Scholar 

  • Larson, M. J., South, M., Clayson, P. E., & Clawson, A. (2012). Cognitive control and conflict adaptation in youth with high-functioning autism. Journal of Child Psychology and Psychiatry, 53, 440–448. doi:10.1111/j.1469-7610.2011.02498.x.

    Article  PubMed  Google Scholar 

  • Larson, M. J., South, M., Krauskopf, E., Clawson, A., & Crowley, M. J. (2010). Feedback and reward processing in high-functioning autism. Psychiatry Research, 187, 198–203. doi:10.1016/j.psychres.2010.11.006.

    Article  PubMed  Google Scholar 

  • Levin, H. S., Wilde, E. A., Chu, Z., Yallampalli, R., Hanten, G. R., & Li, X. (2008). Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children. The Journal of Head Trauma Rehabilitation, 23, 197–208. doi:10.1097/01.HTR.0000327252.54128.7c.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lo, Y., Soong, W., Gau, S. S., Wu, Y., Lai, M., Yeh, F., et al. (2011). The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: A study using diffusion spectrum imaging tractography. Psychiatry Research: Neuroimaging, 192, 60–66. doi:10.1016/j.pscychresns.2010.09.008.

    Article  PubMed  Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.

    Article  PubMed  Google Scholar 

  • Martin, C. D., Thierry, G., Démonet, J.-F., Roberts, M., & Nazir, T. (2007). ERP evidence for the split fovea theory. Brain Research, 1185, 212–220. doi:10.1016/j.brainres.2007.09.049.

    Article  PubMed  Google Scholar 

  • McCaffery, P., & Deutsch, C. K. (2005). Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology, 77, 38–56. doi:10.1016/j.pneurobio.2005.10.005.

    Article  PubMed  Google Scholar 

  • Moes, P., Brown, W., & Minnema, M. (2007). Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials. Neuropsychologia, 45, 2626–2630. doi:10.1016/j.neuropsychologia.2007.03.017.

    Article  PubMed  Google Scholar 

  • Noriuchi, M., Kikuchi, Y., Yoshiura, T., Kira, R., Shigeto, H., & Hara, T. (2010). Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Research, 1362, 141–149. doi:10.1016/j.brainres.2010.09.051.

    Article  PubMed  Google Scholar 

  • Orekhova, E. V., Stroganova, T. A., Nygren, G., Tsetlin, M. M., Posikera, I. N., Gillberg, C., et al. (2007). Excess of high frequency electroencephalogram oscillations in boys with autism. Biological Psychiatry, 62, 1022–1029. doi:10.1016/j.biopsych.2006.12.029.

    Article  PubMed  Google Scholar 

  • Patson, L. L., Kirk, I. J., Rolfe, M. H. S., Corballis, M. C., & Tippett, L. J. (2007). The unusual symmetry of musicians: Musicians have equilateral interhemispheric transfer for visual information. Neuropsychologia, 45, 2059–2065. doi:10.1016/j.neuropsychologia.2007.02.001.

    Article  Google Scholar 

  • Pfefferbaum, A., Sullivan, E. V., Hedehus, M., Adalsteinsson, E., Lim, K. O., & Moseley, M. (2000). In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcoholism, Clinical and Experimental Research, 24, 1214–1221. doi:10.1111/j.1530-0277.2000.tb02086.x.

    Article  PubMed  Google Scholar 

  • Rugg, M. D., Milner, A. D., & Lines, C. R. (1985). Visual evoked potentials to lateralised stimuli in two cases of callosal agenesis. Journal of Neurology, Neurosurgery and Psychiatry, 48, 367–373.

    Article  PubMed Central  PubMed  Google Scholar 

  • Samson, F., Mottron, L., Soulieres, I., & Zeffiro, T. A. (2012). Enhanced visual functioning in autism: An ALE meta-analysis. Human Brain Mapping, 33, 1553–1581. doi:10.1002/hbm.21307.

    Article  PubMed  Google Scholar 

  • Schimmel, H. (1967). The (±) reference: Accuracy of estimated mean components in average response studies. Science, 157, 92–94.

    Article  PubMed  Google Scholar 

  • Shukla, D. K., Keehn, B., Lincoln, A. J., & Müller, R. A. (2010). White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: A diffusion tensor imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(1269–1278), e1262. doi:10.1016/j.jaac.2010.08.018.

    Google Scholar 

  • South, M., Larson, M. J., Krauskopf, E., & Clawson, A. (2010). Error processing in high-functioning Autism Spectrum Disorders. Biological Psychology, 85, 242–251. doi:10.1016/j.biopsycho.2010.07.009.

    Article  PubMed  Google Scholar 

  • Steger, J., Imhof, K., Denoth, J., Pascual-Marqui, R. D., Steinhausen, H. C., & Brandeis, D. (2001). Brain mapping of bilateral visual interactions in children. Psychophysiology, 38, 243–253. doi:10.1111/1469-8986.3820243.

    Article  PubMed  Google Scholar 

  • Viding, E., & Blakemore, S. J. (2007). Endophenotype approach to developmental psychopathology: Implications for autism research. Behavioral Genetics, 37, 51–60. doi:10.1007/s10519-006-9105-4.

    Article  Google Scholar 

  • Wass, S. (2011). Distortions and disconnections: Disrupted brain connectivity in autism. Brain and Cognition, 75, 18–28. doi:10.1016/j.bandc.2010.10.005.

    Article  PubMed  Google Scholar 

  • Westerhausen, R., Kreuder, F., Woerner, W., Huster, R. J., Smit, C. M., Schweiger, E., et al. (2006). Interhemispheric transfer time and structural properties of the corpus callosum. Neuroscience Letters, 409, 140–145. doi:10.1016/j.neulet.2006.09.028.

    Article  PubMed  Google Scholar 

  • Yamauchi, H., Fukuyama, H., Nagahama, Y., Katsumi, Y., Dong, Y., & Hayashi, T. (1998). Atrophy of the corpus callosum, cortical hypometabolism, and cognitive impairment in corticobasal degeneration. Archives of Neurology, 55, 609–614.

    Article  PubMed  Google Scholar 

  • Yamauchi, H., Fukuyama, H., Nagahama, Y., Katsumi, Y., Dong, Y., Konishi, J., et al. (1996). Atrophy of the corpus callosum associated with cognitive impairment and widespread cortical hypometabolism in carotid artery occlusive disease. Archives of Neurology, 53, 1103–1109.

    Article  PubMed  Google Scholar 

  • Yamauchi, H., Fukuyama, H., Nagahama, Y., Katsumi, Y., Dong, Y., Konishi, J., et al. (1997). Atrophy of the corpus callosum, cognitive impairment, and cortical hypometabolism in progressive supranuclear palsy. Annals of neurology, 41, 606–614. doi:10.1002/ana.410410509.

    Article  PubMed  Google Scholar 

  • Zikopoulos, B., & Barbas, H. (2010). Changes in prefrontal axons may disrupt the network in autism. Journal of Neuroscience, 30, 14595–14609. doi:10.1523/JNEUROSCI.2257-10.2010.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance of Kyle Jamison, Whitney Worsham, Whitney Ernst, and Tiffany Newton in data collection. This study was supported by funds from the Brigham Young University College of Family, Home, and Social Sciences, and the Poelman Foundation.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Larson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clawson, A., Clayson, P.E., South, M. et al. An Electrophysiological Investigation of Interhemispheric Transfer Time in Children and Adolescents with High-Functioning Autism Spectrum Disorders. J Autism Dev Disord 45, 363–375 (2015). https://doi.org/10.1007/s10803-013-1895-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-013-1895-7

Keywords

Navigation