Skip to main content
Log in

Using Perceptual Signatures to Define and Dissociate Condition-Specific Neural Etiology: Autism and Fragile X Syndrome as Model Conditions

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

The functional link between genetic alteration and behavioral end-state is rarely straightforward and never linear. Cases where neurodevlopmental conditions defined by a distinct genetic etiology share behavioral phenotypes are exemplary, as is the case for autism and Fragile X Syndrome (FXS). In this paper and its companion paper, we propose a method for assessing the functional link between genotype and neural alteration across these target conditions by comparing their perceptual signatures. In the present paper, we discuss how such signatures can be used to (1) define and differentiate various aspects of neural functioning in autism and FXS, and subsequently, (2) to infer candidate causal (genetic) mechanisms based on such signatures (see companion paper, this issue).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews. Genetics, 9(5), 341–355.

    Article  PubMed  Google Scholar 

  • Armstrong, V., Maurer, D., et al. (2009). Sensitivity to first- and second-order motion and form in children and adults. Vision Research, 49(23), 2774–2781.

    Article  PubMed  Google Scholar 

  • Ashida, H., Lingnau, A., et al. (2007). FMRI adaptation reveals separate mechanisms for first-order and second-order motion. Journal of Neurophysiology, 97(2), 1319–1325.

    Article  PubMed  Google Scholar 

  • Atkinson, J., Braddick, O., et al. (2006). Dorsal-stream motion processing deficits persist into adulthood in Williams syndrome. Neuropsychologia, 44(5), 828–833.

    Article  PubMed  Google Scholar 

  • Atkinson, J., King, J., et al. (1997). A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport, 8(8), 1919–1922.

    Article  PubMed  Google Scholar 

  • Baker, C. L., Jr. (1999). Central neural mechanisms for detecting second-order motion. Current Opinion in Neurobiology, 9(4), 461–466.

    Article  PubMed  Google Scholar 

  • Baldassi, S., Pei, F., et al. (2009). Search superiority in autism within, but not outside the crowding regime. Vision Research, 49(16), 2151–2156.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Ashwin, E., et al. (2009). Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1377–1383.

    Article  PubMed  Google Scholar 

  • Behrmann, M., Thomas, C., et al. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10(6), 258–264.

    Article  PubMed  Google Scholar 

  • Belmonte, M. K., & Bourgeron, T. (2006). Fragile X syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9(10), 1221–1225.

    Article  PubMed  Google Scholar 

  • Belmonte, M. K., Cook, E. H., Jr., et al. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9(7), 646–663.

    PubMed  Google Scholar 

  • Bertone, A., & Faubert, J. (2006). Demonstrations of decreased sensitivity to complex motion information not enough to propose an autism-specific neural etiology. Journal of Autism and Developmental Disorders, 36(1), 55–64.

    Article  PubMed  Google Scholar 

  • Bertone, A., Hanck, J., et al. (2008). Development of static and dynamic perception for luminance-defined and texture-defined information. Neuroreport, 19(2), 225–228.

    Article  PubMed  Google Scholar 

  • Bertone, A., Mottron, L., et al. (2003). Motion perception in autism: A “complex” issue. Journal of Cognitive Neuroscience, 15(2), 218–225.

    Article  PubMed  Google Scholar 

  • Bertone, A., Mottron, L., et al. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(Pt 10), 2430–2441.

    Article  PubMed  Google Scholar 

  • Blake, R., Turner, L. M., et al. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151–157.

    Article  PubMed  Google Scholar 

  • Bonnel, A., Mottron, L., et al. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235.

    Article  PubMed  Google Scholar 

  • Braddick, O., Atkinson, J., et al. (2003). Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia, 41(13), 1769–1784.

    Article  PubMed  Google Scholar 

  • Brosseau-Lachaine, O., Gagnon, I., et al. (2008). Mild traumatic brain injury induces prolonged visual processing deficits in children. Brain Injury, 22(9), 657–668.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., et al. (2002). Minicolumnar pathology in autism. Neurology, 58(3), 428–432.

    PubMed  Google Scholar 

  • Cavanagh, P., & Mather, G. (1989). Motion: The long and short of it. Spatial Vision, 4(2–3), 103–129.

    Article  PubMed  Google Scholar 

  • Chen, Y., Levy, D. L., et al. (2003). Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. American Journal of Psychiatry, 160(10), 1795–1801.

    Article  PubMed  Google Scholar 

  • Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America. A Optics and Image Science, 5(11), 1986–2007.

    Article  Google Scholar 

  • Churchill, J. D., Beckel-Mitchener, A., et al. (2002). Effects of Fragile X syndrome and an FMR1 knockout mouse model on forebrain neuronal cell biology. Microscopy Research and Technique, 57(3), 156–158.

    Article  PubMed  Google Scholar 

  • Clifford, S., Dissanayake, C., et al. (2007). Autism spectrum phenotype in males and females with fragile X full mutation and premutation. Journal of Autism and Developmental Disorders, 37(4), 738–747.

    Article  PubMed  Google Scholar 

  • Cohen, I. L. (1994). An artificial neural network analogue of learning in autism. Biological Psychiatry, 36(1), 5–20.

    Article  PubMed  Google Scholar 

  • Comery, T. A., Harris, J. B., et al. (1997). Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5401–5404.

    Article  PubMed  Google Scholar 

  • Cornish, K. M., Munir, F., et al. (1999). Spatial cognition in males with Fragile-X syndrome: Evidence for a neuropsychological phenotype. Cortex, 35(2), 263–271.

    Article  PubMed  Google Scholar 

  • Cornish, K. M., Turk, J., et al. (2004). Annotation: Deconstructing the attention deficit in fragile X syndrome: A developmental neuropsychological approach. Journal of Child Psychology and Psychiatry, 45(6), 1042–1053.

    Article  PubMed  Google Scholar 

  • Cornish, K., Turk, J., et al. (2008). The fragile X continuum: New advances and perspectives. Journal of Intellectual Disability Research, 52(Pt 6), 469–482.

    Article  PubMed  Google Scholar 

  • Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507.

    Article  PubMed  Google Scholar 

  • Del Viva, M. M., Igliozzi, R., et al. (2006). Spatial and motion integration in children with autism. Vision Research, 46(8–9), 1242–1252.

    Article  PubMed  Google Scholar 

  • Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.

    PubMed  Google Scholar 

  • Dumoulin, S. O., Baker, C. L., Jr., et al. (2003). Cortical specialization for processing first- and second-order motion. Cerebral Cortex, 13(12), 1375–1385.

    Article  PubMed  Google Scholar 

  • Eckert, M. A., Galaburda, A. M., et al. (2006). The neurobiology of Williams syndrome: Cascading influences of visual system impairment? Cellular and Molecular Life Sciences, 63(16), 1867–1875.

    Article  PubMed  Google Scholar 

  • Farzin, F., Whitney, D., et al. (2008). Contrast detection in infants with fragile X syndrome. Vision Research, 48(13), 1471–1478.

    Article  PubMed  Google Scholar 

  • Franklin, A., Sowden, P., et al. (2010). Reduced chromatic discrimination in children with autism spectrum disorders. Developmental Science, 13(1), 188–200.

    Article  PubMed  Google Scholar 

  • Freitag, C. M., Konrad, C., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 1480–1494.

    Article  PubMed  Google Scholar 

  • Greenough, W. T., Klintsova, A. Y., et al. (2001). Synaptic regulation of protein synthesis and the fragile X protein. Proceedings of the National Academy of Sciences of the United States of America, 98(13), 7101–7106.

    Article  PubMed  Google Scholar 

  • Gunn, A., Cory, E., et al. (2002). Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport, 13(6), 843–847.

    Article  PubMed  Google Scholar 

  • Gustafsson, L. (1997a). Excessive lateral feedback synaptic inhibition may cause autistic characteristics. Journal of Autism and Developmental Disorders, 27(2), 219–220.

    Article  PubMed  Google Scholar 

  • Gustafsson, L. (1997b). Inadequate cortical feature maps: A neural circuit theory of autism. Biological Psychiatry, 42(12), 1138–1147.

    Article  PubMed  Google Scholar 

  • Gustafsson, L. (2004). Comment on “disruption in the inhibitory architecture of the cell minicolumn: Implications for autism”. Neuroscientist, 10(3), 189–191.

    Article  PubMed  Google Scholar 

  • Habak, C., & Faubert, J. (2000). Larger effect of aging on the perception of higher-order stimuli. Vision Research, 40(8), 943–950.

    Article  PubMed  Google Scholar 

  • Hansen, P. C., Stein, J. F., et al. (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? Neuroreport, 12(7), 1527–1530.

    Article  PubMed  Google Scholar 

  • Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.

    Article  PubMed  Google Scholar 

  • Heaton, P., Hermelin, B., et al. (1999). Can children with autistic spectrum disorders perceive affect in music? An experimental investigation. Psychological Medicine, 29(6), 1405–1410.

    Article  PubMed  Google Scholar 

  • Herbert, M. R. (2005). Autism: A brain disorder, or a disorder that affects the brain. Clinical Neuropsychiatry, 2, 354–379.

    Google Scholar 

  • Irwin, S. A., Galvez, R., et al. (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cerebral Cortex, 10(10), 1038–1044.

    Article  PubMed  Google Scholar 

  • Irwin, S. A., Idupulapati, M., et al. (2002). Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. American Journal of Medical Genetics, 111(2), 140–146.

    Article  PubMed  Google Scholar 

  • Irwin, S. A., Patel, B., et al. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: A quantitative examination. American Journal of Medical Genetics, 98(2), 161–167.

    Article  PubMed  Google Scholar 

  • Kaiser, M. D., & Shiffrar, M. (2009). The visual perception of motion by observers with autism spectrum disorders: A review and synthesis. Psychonomic Bulletin & Review, 16(5), 761–777.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (2007). Atypical epigenesis. Developmental Science, 10(1), 84–88.

    Article  PubMed  Google Scholar 

  • Keita, L., Mottron, L., & Bertone, A. (in press). Far visual acuity is unremarkable in autism: Do we need to focus on crowding? Autism Research.

  • Keri, S., & Benedek, G. (2009). Visual pathway deficit in female fragile X premutation carriers: A potential endophenotype. Brain and Cognition, 69(2), 291–295.

    Article  PubMed  Google Scholar 

  • Keri, S., Must, A., et al. (2006). Development of visual motion perception in children of patients with schizophrenia and bipolar disorder: A follow-up study. Schizophrenia Research, 82(1), 9–14.

    Article  PubMed  Google Scholar 

  • Kim, J., Doop, M. L., et al. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77(2–3), 299–307.

    Article  PubMed  Google Scholar 

  • Kogan, C. S., Bertone, A., et al. (2004a). Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome. Neurology, 63(9), 1634–1639.

    PubMed  Google Scholar 

  • Kogan, C. S., Boutet, I., et al. (2004b). Differential impact of the FMR1 gene on visual processing in fragile X syndrome. Brain, 127(Pt 3), 591–601.

    PubMed  Google Scholar 

  • Kohonen, K. (1995). Self-organizing maps. Springer: New-York.

    Google Scholar 

  • Koldewyn, K., Whitney, D., et al. (2009). The psychophysics of visual motion and global form processing in autism. Brain.

  • Larsson, J., Landy, M. S., et al. (2006). Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology, 95(2), 862–881.

    Article  PubMed  Google Scholar 

  • Loesch, D. Z., Huggins, R., et al. (1993). Genotype-phenotype relationships in fragile X syndrome: A family study. American Journal of Human Genetics, 53(5), 1064–1073.

    PubMed  Google Scholar 

  • Losh, M., Sullivan, P. F., et al. (2008). Current developments in the genetics of autism: From phenome to genome. Journal of Neuropathology and Experimental Neurology, 67(9), 829–837.

    Article  PubMed  Google Scholar 

  • McClelland, J. L. (2000). The basis of hyperspecificity in autism: A preliminary suggestion based on properties of neural nets. Journal of Autism and Developmental Disorders, 30(5), 497–502.

    Article  PubMed  Google Scholar 

  • McKendrick, A. M., & Badcock, D. R. (2004). An analysis of the factors associated with visual field deficits measured with flickering stimuli in-between migraine. Cephalalgia, 24(5), 389–397.

    Article  PubMed  Google Scholar 

  • Milne, E., Swettenham, J., et al. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263.

    Article  PubMed  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. New York: Oxford University Press.

    Google Scholar 

  • Mottron, L., Dawson, M., et al. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.

    Article  PubMed  Google Scholar 

  • Mottron, L., Dawson, M., et al. (2009). Enhanced perception in savant syndrome: Patterns, structure and creativity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1385–1391.

    Article  PubMed  Google Scholar 

  • Mottron, L., Peretz, I., et al. (2000). Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry, 41(8), 1057–1065.

    Article  PubMed  Google Scholar 

  • Muhle, R., Trentacoste, S. V., et al. (2004). The genetics of autism. Pediatrics, 113(5), e472–e486.

    Article  PubMed  Google Scholar 

  • Muller, R. A. (2007). The study of autism as a distributed disorder. Mental Retardation and Developmental Disabilities Research Reviews, 13(1), 85–95.

    Article  PubMed  Google Scholar 

  • Nishida, S., Ledgeway, T., et al. (1997). Dual multiple-scale processing for motion in the human visual system. Vision Research, 37(19), 2685–2698.

    Article  PubMed  Google Scholar 

  • Nishida, S., Sasaki, Y., et al. (2003). Neuroimaging of direction-selective mechanisms for second-order motion. Journal of Neurophysiology, 90(5), 3242–3254.

    Article  PubMed  Google Scholar 

  • O’Brien, J., Spencer, J., et al. (2002). Form and motion coherence processing in dyspraxia: Evidence of a global spatial processing deficit. Neuroreport, 13(11), 1399–1402.

    Article  PubMed  Google Scholar 

  • O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665–675.

    Article  PubMed  Google Scholar 

  • Pei, F., Baldassi, S., et al. (2009). Neural correlates of texture and contour integration in children with autism spectrum disorders. Vision Research, 49(16), 2140–2150.

    Article  PubMed  Google Scholar 

  • Pellicano, E., & Gibson, L. Y. (2008). Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia, 46(10), 2593–2596.

    Article  PubMed  Google Scholar 

  • Pellicano, E., Gibson, L., et al. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 1044–1053.

    Article  PubMed  Google Scholar 

  • Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29(7), 349–358.

    Article  PubMed  Google Scholar 

  • Reddy, K. S. (2005). Cytogenetic abnormalities and fragile-X syndrome in Autism Spectrum Disorder. BMC Medical Genetics, 6, 3.

    Article  PubMed  Google Scholar 

  • Rogers, S. J., Wehner, D. E., et al. (2001). The behavioral phenotype in fragile X: Symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. Journal of Developmental and Behavioral Pediatrics, 22(6), 409–417.

    PubMed  Google Scholar 

  • Simmers, A. J., Ledgeway, T., et al. (2003). Deficits to global motion processing in human amblyopia. Vision Research, 43(6), 729–738.

    Article  PubMed  Google Scholar 

  • Simmons, D. R., Robertson, A. E., et al. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739.

    Article  PubMed  Google Scholar 

  • Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision Research, 40(1), 111–127.

    Article  PubMed  Google Scholar 

  • Smith, A. T., Greenlee, M. W., et al. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18(10), 3816–3830.

    PubMed  Google Scholar 

  • Spencer, J. V., & O’Brien, J. M. (2006). Visual form-processing deficits in autism. Perception, 35(8), 1047–1055.

    Article  PubMed  Google Scholar 

  • Spencer, J., O’Brien, J., et al. (2000). Motion processing in autism: Evidence for a dorsal stream deficiency. Neuroreport, 11(12), 2765–2767.

    Article  PubMed  Google Scholar 

  • Sperling, G., Chubb, C., et al. (1994). Full-wave and half-wave processes in second-order motion and texture. Ciba Foundation Symposium, 184, 287–303. discussion 303-8, 330-8.

    PubMed  Google Scholar 

  • Steyaert, J. G., & De la Marche, W. (2008). What’s new in autism? European Journal of Pediatrics, 167(10), 1091–1101.

    Article  PubMed  Google Scholar 

  • Sutter, A., Sperling, G., et al. (1995). Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Research, 35(7), 915–924.

    Article  PubMed  Google Scholar 

  • Theobald, T. M., Hay, D. A., et al. (1987). Individual variation and specific cognitive deficits in the fra(X) syndrome. American Journal of Medical Genetics, 28(1), 1–11.

    Article  PubMed  Google Scholar 

  • Tommerdahl, M., Tannan, V., et al. (2008). Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity? Behavioral and Brain Functions, 4, 19.

    Article  PubMed  Google Scholar 

  • Tsermentseli, S., O’Brien, J. M., et al. (2008). Comparison of form and motion coherence processing in autistic spectrum disorders and dyslexia. Journal of Autism and Developmental Disorders, 38(7), 1201–1210.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Analysis of visual behavior. Cambridge, MA: MIT.

    Google Scholar 

  • Vandenbroucke, M. W., Scholte, H. S., et al. (2008). A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain, 131(Pt 4), 1013–1024.

    Article  PubMed  Google Scholar 

  • Vandenbroucke, M. W., Scholte, H. S., et al. (2009). A new approach to the study of detail perception in Autism Spectrum Disorder (ASD): Investigating visual feedforward, horizontal and feedback processing. Vision Research, 49(9), 1006–1016.

    Article  PubMed  Google Scholar 

  • Vattikuti, S., & Chow, C. C. (2009). A computational model for cerebral cortical dysfunction in autism spectrum disorders. Biological Psychiatry.

  • Wassink, T. H., Piven, J., et al. (2001). Chromosomal abnormalities in a clinic sample of individuals with autistic disorder. Psychiatric Genetics, 11(2), 57–63.

    Article  PubMed  Google Scholar 

  • Wilmer, J. B., Richardson, A. J., et al. (2004). Two visual motion processing deficits in developmental dyslexia associated with different reading skills deficits. Journal of Cognitive Neuroscience, 16(4), 528–540.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., Ferrera, V. P., et al. (1992). A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience, 9(1), 79–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by funding from a Canadian Institutes of Health Research (CIHR)-Clinical Research Initiative fellowship to AB, a Fonds de la Recherche en Santé du Québec (FRSQ) doctoral scholarship to JH, a CIHR-Canada Research Chair (Tier 1) to KC, a Natural Sciences and Engineering Research Council of Canada discovery grant to CK, and a CIHR Operating Grant to KC and AC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Bertone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertone, A., Hanck, J., Kogan, C. et al. Using Perceptual Signatures to Define and Dissociate Condition-Specific Neural Etiology: Autism and Fragile X Syndrome as Model Conditions. J Autism Dev Disord 40, 1531–1540 (2010). https://doi.org/10.1007/s10803-010-1109-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-010-1109-5

Keywords

Navigation