Skip to main content

Advertisement

Log in

Reduced Gyral Window and Corpus Callosum Size in Autism: Possible Macroscopic Correlates of a Minicolumnopathy

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Minicolumnar changes that generalize throughout a significant portion of the cortex have macroscopic structural correlates that may be visualized with modern structural neuroimaging techniques. In magnetic resonance images (MRIs) of fourteen autistic patients and 28 controls, the present study found macroscopic morphological correlates to recent neuropathological findings suggesting a minicolumnopathy in autism. Autistic patients manifested a significant reduction in the aperture for afferent/efferent cortical connections, i.e., gyral window. Furthermore, the size of the gyral window directly correlated to the size of the corpus callosum. A reduced gyral window constrains the possible size of projection fibers and biases connectivity towards shorter corticocortical fibers at the expense of longer association/commisural fibers. The findings may help explain abnormalities in motor skill development, differences in postnatal brain growth, and the regression of acquired functions observed in some autistic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adalsteinsson, D., & Sethian, J. A. (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118, 269–277. doi:10.1006/jcph.1995.1098.

    Article  Google Scholar 

  • Aggoun-Zouaoui, D., Kiper, D. C., & Innocenti, G. M. (1996). Growth of callosal terminal arbors in primary visual areas of the cat. The European Journal of Neuroscience, 8, 1132–1148. doi:10.1111/j.1460-9568.1996.tb01281.x.

    Article  Google Scholar 

  • Allman, J. M. (1990). Evolution of neocortex. In E. G. Jones & A. Peters (Eds.), Comparative structure and evolution of cerebral cortex (pp. 269–283). New York: Plenum Press.

    Google Scholar 

  • Armstrong, E., Curtis, M., Fregoe, C., Zilles, K., Casanova, M. F., & McCarthy, W. (1991). Cortical gyrification in the rhesus monkey: A test of the mechanical folding hypothesis. Cerebral Cortex (New York, N.Y.), 1, 426–432. doi:10.1093/cercor/1.5.426.

    Article  Google Scholar 

  • Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex (New York, N.Y.), 5, 56–63. doi:10.1093/cercor/5.1.56.

    Article  Google Scholar 

  • Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 158–159.

    Google Scholar 

  • Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., et al. (1998). A clinicopathological study of autism. Brain, 121, 889–905. doi:10.1093/brain/121.5.889.

    Article  PubMed  Google Scholar 

  • Bailey, A., Phillips, W., & Rutter, M. (1996). Autism: Toward an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. Journal of Child Psychology and Psychiatry and Allied Disciplines, 37, 39–126. doi:10.1111/j.1469-7610.1996.tb01381.x.

    Google Scholar 

  • Baranek, G. T., Parham, D., & Bodfish, J. W. (2005). Sensory and motor features in autism: Assessment and intervention. In F. R. Volkmar, R. Paul, A. Lin, & D. Cohen (Eds.), Handbook of autism and pervasive developmental disorders, vol. 2: Assessment, interventions, and policy (pp. 831–857). New Jersey: Wiley.

    Google Scholar 

  • Bauman, M. L., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–874.

    PubMed  Google Scholar 

  • Bauman, M. L., & Kemper, T. L. (1988). Limbic and cerebellar abnormalities: Consistent findings in infantile autism. Journal of Neuropathology and Experimental Neurology, 47, 369.

    Google Scholar 

  • Bauman, M. L., & Kemper, T. L. (1994). Neuroanatomic observations of the brain in autism. In M. L. Bauman & T. L. Kemper (Eds.), The neurobiology of autism (pp. 119–145). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Blanton, R. E., Levitt, J. G., Thompson, P. M., Narr, K. L., Capetillo-Cunliffe, L., Nobel, A., et al. (2001). Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Research: Neuroimaging, 107, 29–43. doi:10.1016/S0925-4927(01)00091-9.

    Article  PubMed  Google Scholar 

  • Bouman, C., & Sauer, K. (1993). A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Transactions on Image Processing, 2, 296–310. doi:10.1109/83.236536.

    Article  PubMed  Google Scholar 

  • Bradbury, J. (2005). Molecular insights into human brain evolution. PLoS Biology, 3, e50. doi:10.1371/journal.pbio.0030050.

    Article  PubMed  Google Scholar 

  • Brodmann, K. (1913). Neue Forschungsergebnisse der Grosshirnrindenanatomie mit besonderer Berücksichtigung anthropologischer Fragen. Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte, 85, 200–240.

    Google Scholar 

  • Brown, A. G. (2001). Nerve cells and nervous systems: An introduction to neuroscience (2nd ed.). London: Springer.

    Google Scholar 

  • Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switzer, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32, 483–491. doi:10.1111/j.1365-2990.2006.00745.x.

    Article  PubMed  Google Scholar 

  • Casanova, M. F. (2004). White matter volume increase and minicolumns in autism. Annals of Neurology, 56, 453. doi:10.1002/ana.20196.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Araque, J., Giedd, J., & Rumsey, J. M. (2004). Reduced brain size and gyrification in the brains of dyslexic patients. Journal of Child Neurology, 19, 275–281. doi:10.1177/088307380401900407.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D., Switala, A., & Roy, E. (2002a). Minicolumnar pathology in autism. Neurology, 58, 428–432.

    PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D., Switala, A., & Roy, E. (2002b). Neuronal density and architecture (gray level index) in the brains of autistic patients. Journal of Child Neurology, 17, 515–521. doi:10.1177/088307380201700708.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Farag, A., El-Baz, A., Mott, M., Hassan, H., Fahmi, R., Switala, A. E. (2006a). Abnormalities of the gyral window in autism: A macroscopic correlate to a putative minicolumnopathy. Journal of Special Education and Rehabilitation, 1(1–2), 85–101.

    Google Scholar 

  • Casanova, M. F., & Tillquist, C. (2008). Encephalization, emergent properties, and psychiatry: A minicolumnar perspective. The Neuroscientist, 14, 101–118. doi:10.1177/1073858407309091.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Van Kooten, I. A. J., Switala, A. E., Van Engeland, H., Heinsen, H., Steinbusch, H. W. M., et al. (2006b). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287–303. doi:10.1007/s00401-006-0085-5.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Van Kooten, I., Switala, A. E., Van England, H., Heinsen, H., Steinbuch, H. W. M., et al. (2006c). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Research, 6, 127–133. doi:10.1016/j.cnr.2006.06.003.

    Article  Google Scholar 

  • Chambers, D., & Fishell, G. (2006). Functional genomics of early cortex patterning. Genome Biology, 7, 202. doi:10.1186/gb-2006-7-1-202.

    Article  PubMed  Google Scholar 

  • Chenn, A., & Walsh, C. A. (2003). Increased neuronal production, enlarged forebrains, and cytoarchitectural distortions in β-catenin overexpressing transgenic mice. Cerebral Cortex (New York, N.Y.), 13, 599–606. doi:10.1093/cercor/13.6.599.

    Article  Google Scholar 

  • Cook, N. D. (1984). Homotopic callosal inhibition. Brain and Language, 23, 116–125. doi:10.1016/0093-934X(84)90010-5.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Carper, R. A., & Akshoomoff, N. A. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344. doi:10.1001/jama.290.3.337.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.

    PubMed  Google Scholar 

  • Courchesne, E., Muller, R. A., & Saitoh, O. (1999). Brain weight in autism: Normal in the majority of cases, megaloencephalic in rare cases. Neurology, 52, 1057–1059.

    PubMed  Google Scholar 

  • Dawson, G., Munson, J., Webb, S. J., Nalty, T., Abbott, R., & Toth, K. (2007). Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biological Psychiatry, 61, 458–464. doi:10.1016/j.biopsych.2006.07.016.

    Article  PubMed  Google Scholar 

  • Deacon, T. W. (1988). Human brain evolution, II: Embryology and brain allometry. In H. Jerison & I. Jerison (Eds.), Intelligence and evolutionary biology (pp. 383–415). Berlin: Springer.

    Google Scholar 

  • Deacon, T. W. (1990). Rethinking mammalian brain evolution. American Zoologist, 30, 629–705.

    Google Scholar 

  • Devlin, A. M., Cross, J. H., Harkness, W., Chong, W. K., Harding, B., Vargha-Khadem, F., et al. (2003). Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence. Brain, 126, 556–566. doi:10.1093/brain/awg052.

    Article  PubMed  Google Scholar 

  • Doidge, N. (2007). The brain that changes itself. New York: Viking.

    Google Scholar 

  • El-Baz, A., Casanova, M. F., Gimel’farb, G., Mott, M., & Switala, A. E. (2007a). A new image analysis approach for automatic classification of autistic brains. In IEEE Engineering in Medicine and Biology Society, Biomedical imaging: Macro to nano (pp. 352–355). Piscataway, NJ: IEEE.

  • El-Baz, A., Casanova, M. F., Gimel’farb, G., Mott, M., & Switala, A. (2007b). Autism diagnostics by 3D texture analysis of cerebral white matter gyrifications. In N. Ayache, S. Ourselin, & A. Maeder (Eds.), Medical image computing and computer-assisted intervention—MICCAI 2007 (part II) (pp. 882–890). New York: Springer.

    Chapter  Google Scholar 

  • El-Baz, A., Farag, A., Ali, A., Gimel’farb, G., & Casanova, M. (2006). A framework for unsupervised segmentation of multi-modal medical images. In R. R. Beichel & M. Sonka (Eds.), Computer vision approaches to medical image analysis (pp. 120–131). New York: Springer.

    Chapter  Google Scholar 

  • Fahmi, R., Aly, A., El-Baz, A., & Farag, A. A. (2006). New deformable registration technique using scale space and curve evolution theory and a finite element based validation framework. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 28, 3041–3044.

    Google Scholar 

  • Fahmi, R., El-Baz, A., Hassan, H., Farag, A., & Casanova, M. F. (2007). Classification techniques for autistic vs. typically developing brain using MRI data. In Biomedical imaging: From nano to macro (pp. 1348–1351). Piscataway, NJ: IEEE.

  • Ferrer, I., Hernández-Martí, M., Bernet, E., & Galofré, E. (1988). Formation and growth of the cerebral convolutions, I: Postnatal development of the median-suprasylvian gyrus and adjoining sulci in the cat. Journal of Anatomy, 160, 89–100.

    PubMed  Google Scholar 

  • Friede, R. L. (1989). Developmental neuropathology (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Gibson, K. R., Rumbaugh, D., & Beran, M. (2001). Bigger is better: Primate brain size in relationship to cognition. In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 79–97). Cambridge: Cambridge University Press.

    Google Scholar 

  • Goldberg, J., Szatmari, P., & Nahmias, C. (1999). Imaging of autism: Lessons from the past to guide studies in the future. Canadian Journal of Psychiatry, 44, 793–801.

    Google Scholar 

  • Hardan, A. Y., Jou, R. J., Keshavan, M. S., Varma, R., & Minshew, N. J. (2004). Increased frontal cortical folding in autism: A preliminary MRI study. Psychiatry Research, 131, 263–268. doi:10.1016/j.pscychresns.2004.06.001.

    Article  PubMed  Google Scholar 

  • Hardan, A. Y., Muddasani, S., Vemulapalli, M., Keshevan, M. S., & Minshew, N. J. (2006). An MRI study of increased cortical thickness in autism. The American Journal of Psychiatry, 163, 1290–1292. doi:10.1176/appi.ajp.163.7.1290.

    Article  PubMed  Google Scholar 

  • Hashimoto, T., Murakawa, K., Miyazaki, M., Tayama, M., & Kuroda, Y. (1992a). Magnetic resonance imaging of the brain structures in the posterior fossa in retarded autistic children. Acta Paediatrica (Oslo, Norway), 81, 1030–1034. doi:10.1111/j.1651-2227.1992.tb12169.x.

    Article  Google Scholar 

  • Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., Shimakawa, S., Yoneda, Y., et al. (1993). Brainstem involvement in high-functioning autistic children. Acta Neurologica Scandinavica, 88, 123–128.

    Article  PubMed  Google Scholar 

  • Hashimoto, T., Tayama, M., Miyazaki, M., Sakurama, N., Yoshimoto, T., Murakawa, K., et al. (1992b). Reduced brainstem size in children with autism. Brain and Development, 14, 94–97.

    PubMed  Google Scholar 

  • Haydar, T. F., Bambrick, L. L., Krueger, B. K., & Rakic, P. (1999). Organotypic slice cultures for analysis of proliferation, cell death, and migration in the embryonic neocortex. Brain Research Protocols, 4, 425–437. doi:10.1016/S1385-299X(99)00033-1.

    Article  PubMed  Google Scholar 

  • Herbert, M. R. (2005). Large brains in autism: The challenge of pervasive abnormalities. The Neuroscientist, 11, 417–440. doi:10.1177/0091270005278866.

    Article  PubMed  Google Scholar 

  • Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540. doi:10.1002/ana.20032.

    Article  PubMed  Google Scholar 

  • Hines, M., Chiu, I., McAdams, L. A., Bentler, P. M., & Lipcamon, J. (1992). Cognition and the corpus callosum: Verbal fluency, visuospatial ability, and language lateralization related to midsagittal surface areas of callosal subregions. Behavioral Neuroscience, 106, 3–14. doi:10.1037/0735-7044.106.1.3.

    Article  PubMed  Google Scholar 

  • Hofman, M. A. (1982). Encephalization in mammals in relation to the size of the cerebral cortex. Brain, Behavior and Evolution, 20, 84–96. doi:10.1159/000121583.

    Article  PubMed  Google Scholar 

  • Hofman, M. A. (1989). On the evolution and geometry of the brain in mammals. Progress in Neurobiology, 32, 137–158. doi:10.1016/0301-0082(89)90013-0.

    Article  PubMed  Google Scholar 

  • Hofman, M. A. (2001). Brain evolution in hominids: Are we at the end of the road? In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 113–127). Cambridge: Cambridge University Press.

    Google Scholar 

  • Houzel, J. C., & Milleret, C. (1999). Visual inter-hemispheric processing: Constraints and potentialities set by axonal morphology. Journal de Physiologie, 93, 271–284.

    Google Scholar 

  • Hutsler, J. J., Love, T., & Zhang, H. (2007). Histological and magneticresonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biological Psychiatry, 61, 449–457. doi:10.1016/j.biopsych.2006.01.015.

    Article  PubMed  Google Scholar 

  • Innocenti, G. M. (1986). General organization of callosal connections in the cerebral cortex. In E. G. Jones (Ed.), Cerebral cortex, vol. 5: Sensory-motor area and aspects of cortical connectivity (pp. 291–353). New York: Springer.

    Google Scholar 

  • Kaas, J. H. (2004). Evolution of somatosensory and motor cortex in primates. The Anatomical Record, 281A, 1148–1156. doi:10.1002/ar.a.20120.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1, 321–331. doi:10.1007/BF00133570.

    Article  Google Scholar 

  • Keller, T. A., Kana, R. K., & Just, M. A. (2007). A developmental study of the structural integrity of white matter in autism. NeuroReport, 18, 23–27. doi:10.1097/01.wnr.0000239965.21685.99.

    Article  PubMed  Google Scholar 

  • Kuida, K., Zheng, T. S., Na, S., Kuang, C. Y., Yang, D., Karasuyama, H., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368–372. doi:10.1038/384368a0.

    Article  PubMed  Google Scholar 

  • Lainhart, J. E., Lazar, M., Bigler, E. D., & Alexander, A. (2005). The brain during life in autism: Advances in neuroimaging research. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 57–108). New York: Nova Biomedical.

    Google Scholar 

  • Levitt, J. G., Blanton, R. E., Smalley, S., Thompson, P. M., Guthrie, D., McCracken, J. T., et al. (2003). Cortical sulcal maps in autism. Cerebral Cortex (New York, N.Y.), 13, 728–735. doi:10.1093/cercor/13.7.728.

    Article  Google Scholar 

  • Luders, E., Thompson, P. M., Narr, K. L., Toga, A. W., Lancke, L., & Gaser, C. (2006). A curvature-based approach to estimate local gyrification on the cortical surface. NeuroImage, 29, 1224–1230. doi:10.1016/j.neuroimage.2005.08.049.

    Article  PubMed  Google Scholar 

  • Mariotti, P., Iuvone, L., Torrioli, M. G., & Silveri, M. C. (1998). Linguistic and non-linguistic abilities in a patient with early left hemispherectomy. Neuropsychologia, 36, 1303–1312. doi:10.1016/S0028-3932(98)00031-1.

    Article  PubMed  Google Scholar 

  • Moses, P., Courchesne, E., Stiles, J., Trauner, D., Egaas, B., & Edwards, E. (2000). Regional size reduction in the human corpus callosum following pre- and perinatal brain injury. Cerebral Cortex (New York, N.Y.), 10, 1200–1210. doi:10.1093/cercor/10.12.1200.

    Article  Google Scholar 

  • Neal, J., Takahashi, M., Silva, M., Tiao, G., Walsh, C. A., & Sheen, V. L. (2007). Insights into the gyrification of developing ferret brain by magnetic resonance imaging. Journal of Anatomy, 210, 66–77. doi:10.1111/j.1469-7580.2006.00674.x.

    Article  PubMed  Google Scholar 

  • Nordahl, C. W., Dierker, D., Mostafavi, I., Schumann, C. M., Rivera, S. M., Amaral, D. G., et al. (2007). Cortical folding abnormalities in autism revealed by surface-based morphometry. The Journal of Neuroscience, 27, 11725–11735. doi:10.1523/JNEUROSCI.0777-07.2007.

    Article  PubMed  Google Scholar 

  • Olivares, R., Michalland, S., & Aboitiz, F. (2000). Cross-species and intraspecies morphometric analysis of the corpus callosum. Brain, Behavior and Evolution, 55, 37–43. doi:10.1159/000006640.

    Article  PubMed  Google Scholar 

  • Ono, M., Kubik, S., & Abernathey, C. D. (1990). Atlas of cerebral sulci. New York: Thieme.

    Google Scholar 

  • Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 530–536.

    PubMed  Google Scholar 

  • Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreason, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. The American Journal of Psychiatry, 152, 1145–1149.

    PubMed  Google Scholar 

  • Prothero, J. W., & Sundsten, J. W. (1984). Folding of the cerebral cortex in mammals: A scaling model. Brain, Behavior and Evolution, 24, 152–167. doi:10.1159/000121313.

    Article  PubMed  Google Scholar 

  • Radinsky, L. (1967). Relative brain size: A new measure. Science, 155, 836–838. doi:10.1126/science.155.3764.836.

    Article  PubMed  Google Scholar 

  • Rakic, P. (1988). The specification of cerebral cortical areas: The radial unit hypothesis. Science, 241, 928–931. doi:10.1126/science.3291116.

    Article  Google Scholar 

  • Rakic, P. (1995). One small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neurosciences, 18, 383–388. doi:10.1016/0166-2236(95)93934-P.

    Article  PubMed  Google Scholar 

  • Rilling, J. K., & Insel, T. R. (1999). The primate neocortex in comparative perspective using magnetic resonance imaging. Journal of Human Evolution, 37, 191–223. doi:10.1006/jhev.1999.0313.

    Article  PubMed  Google Scholar 

  • Ringo, J. L. (1991). Neuronal interconnection as a function of brain size. Brain, Behavior and Evolution, 38, 1–6. doi:10.1159/000114375.

    Article  PubMed  Google Scholar 

  • Seldon, H. L. (1981). Structure of human auditory cortex, II: Axon distributions and morphological correlates of speech perception. Brain Research, 229, 295–310. doi:10.1016/0006-8993(81)90995-1.

    Article  PubMed  Google Scholar 

  • Shang, F., Ashwell, K. W. S., Marotte, L. R., & Waite, P. M. E. (1997). Development of commisural neurons in the wallaby (Macropus eugenii). The Journal of Comparative Neurology, 387, 507–523. doi:10.1002/(SICI)1096-9861(19971103)387:4<507::AID-CNE3>3.0.CO;2-6.

    Article  PubMed  Google Scholar 

  • Sidman, R. L., & Rakic, P. (1982). Development of the human central nervous system. In W. Haymaker & A. D. Adams (Eds.), Histology and histopathology of the nervous system (pp. 3–145). Springfield, Ill: Charles C. Thomas.

    Google Scholar 

  • Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 158–159.

    Google Scholar 

  • Szatmari, P., Bremner, R., & Nagy, J. (1989). Asperger’s syndrome: A review of clinical features. Canadian Journal of Psychiatry, 34, 554–560.

    Google Scholar 

  • Tarui, T., Takahashi, T., Nowakowski, R. S., Hayes, N. L., Bhide, P. G., & Caviness, V. S. (2005). Overexpression of p27Kip1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cerebral Cortex (New York, N.Y.), 15, 1343–1355. doi:10.1093/cercor/bhi017.

    Article  Google Scholar 

  • Vargas, D., Nascimbene, C., Krishnan, C., Zimmerman, A., & Pardo, C. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57, 67–81. doi:10.1002/ana.20315.

    Article  PubMed  Google Scholar 

  • Welker, W. (1990). Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In E. G. Jones & A. Peters (Eds.), Comparative structure and evolution of cerebral cortex (pp. 3–136). New York: Plenum Press.

    Google Scholar 

  • Zilles, K., Armstrong, E., Moser, K. H., & Schleicher, A. (1989). Gyrification in the cerebral cortex of primates. Brain, Behavior and Evolution, 34(3), 143–150. doi:10.1159/000116500.

    Article  PubMed  Google Scholar 

  • Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology, 179, 173–179. doi:10.1007/BF00304699.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The series of patients and controls were collected under the guidance and support of Dr. Judith Rapoport, Chief of the Child Psychiatry Branch at the National institute of Mental Heath.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova.

Additional information

Dr. Mannheim is affiliated with the Food and Drug Administration; however, this article was written in his private capacity. No official support or endorsement by the Food and Drug Administration is intended or should be inferred.

This work was written as part of Judith Rumsey’s and Jay Giedd’s official duties as Government employees. The views expressed in this article do not necessarily represent the views of the National Institute of Mental Health, the National Institutes of Health, the Department of Health and Human Services, or the United States Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casanova, M.F., El-Baz, A., Mott, M. et al. Reduced Gyral Window and Corpus Callosum Size in Autism: Possible Macroscopic Correlates of a Minicolumnopathy. J Autism Dev Disord 39, 751–764 (2009). https://doi.org/10.1007/s10803-008-0681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-008-0681-4

Keywords

Navigation