Skip to main content
Log in

Carbon/tin oxide composite electrodes for improved lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Tin and tin oxide-based electrodes are promising high-capacity anodes for lithium-ion batteries. However, poor capacity retention is the major issue with these materials due to the large volumetric expansion that occurs when lithium is alloyed with tin during lithiation and delithiation process. Here, a method to prepare a low-cost, scalable carbon and tin(II) oxide composite anode is reported. The composite material was prepared by ball milling of carbon recovered from used tire powders with 25 wt% tin(II) oxide to form lithium-ion battery anode. With the impact of energy from the ball milling, tin oxide powders were uniformly distributed inside the pores of waste-tire-derived carbon. During lithiation and delithiation, the carbon matrix can effectively absorb the volume expansion caused by tin, thereby minimizing pulverization and capacity fade of the electrodes. The as-synthesized anode yielded a capacity of 690 mAh g−1 after 300 cycles at a current density of 40 mA g−1 with a stable battery performance.

Graphical abstract

A method to prepare low-cost carbon/tin (II) oxide (SnO) composite by ball milling is reported. SnO powders are uniformly distributed inside the carbon matrix, which could effectively absorb the volume expansion of Sn and alleviate capacity fade. The anode yields a capacity of 690 mAh g−1 after 300 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167

    Article  CAS  PubMed  Google Scholar 

  3. Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243

    Article  CAS  Google Scholar 

  4. Li Y, Fu GY, Watson M et al (2016) Monodispersed Li4Ti5O12 with controlled morphology as high power lithium ion battery anodes. ChemNanoMat 2:642

    Article  CAS  Google Scholar 

  5. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… A review of 5 Volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922

    Article  CAS  Google Scholar 

  6. Song J, Shin DW, Lu YH et al (2012) Role of oxygen vacancies on the performance of Li[Ni0.5−xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24:3101

    Article  CAS  Google Scholar 

  7. Kawai H, Nagata M, Tukamoto H, West AR (1998) A new lithium cathode LiCoMnO4: toward practical 5 V lithium batteries. Electrochem Solid State Lett 1:212

    Article  CAS  Google Scholar 

  8. Dimesso L, Forster C, Jaegermann W et al (2012) Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem Soc Rev 41:5068

    Article  CAS  PubMed  Google Scholar 

  9. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y, Zheng G, Misra S et al (2012) High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 134:15387

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Yang Y, Liang Y et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644

    Article  CAS  PubMed  Google Scholar 

  12. Manthiram A, Fu Y, Chung SH et al (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751

    Article  CAS  PubMed  Google Scholar 

  13. Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193

    Article  CAS  Google Scholar 

  14. Hu Y-Y, Liu Z, Nam K-W et al (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12:1130

    Article  CAS  PubMed  Google Scholar 

  15. Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721

    Article  CAS  PubMed  Google Scholar 

  16. Li YC, Wan S, Veith GM et al (2016) A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv Energy Mater 7:1601397

    Article  CAS  Google Scholar 

  17. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503

    Article  CAS  PubMed  Google Scholar 

  18. Xu K, Zhang SS, Jow TR (2005) LiBOB as additive in LiPF[sub 6]-based lithium ion electrolytes. Electrochem Solid-State Lett 8:A365

    Article  CAS  Google Scholar 

  19. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336

    Article  CAS  Google Scholar 

  20. Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115

    Article  CAS  PubMed  Google Scholar 

  21. Park M-S, Kang Y-M, Wang G-X et al (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18:455

    Article  CAS  Google Scholar 

  22. Chen XT, Wang KX, Zhai YB et al (2014) A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Dalton Trans 43:3137

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Xie F, Lyu J et al (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sour 321:11

    Article  CAS  Google Scholar 

  24. Demir-Cakan R, Hu Y-S, Antonietti M et al (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227

    Article  CAS  Google Scholar 

  25. Zhang W-M, Hu J-S, Guo Y-G et al (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160

    Article  CAS  Google Scholar 

  26. Yu Y, Gu L, Zhu C et al (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131:15984

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Li X, Yan B et al (2015) Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J Power Sour 274:869

    Article  CAS  Google Scholar 

  28. Zhang L, Zhao K, Yu R et al (2017) Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small 13:1603973

    Article  CAS  Google Scholar 

  29. Huang X, Cui S, Chang J et al (2015) A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew Chem Int Ed 54:1490

    Article  CAS  Google Scholar 

  30. Tian Q, Zhang Z, Yang L, Hirano S-i (2015) Three-dimensional wire-in-tube hybrids of tin dioxide and nitrogen-doped carbon for lithium ion battery applications. Carbon 93:887

    Article  CAS  Google Scholar 

  31. Danon B, van der Gryp P, Schwarz CE, Görgens JF (2015) A review of dipentene (dl-limonene) production from waste tire pyrolysis. J Anal Appl Pyrol 112:1

    Article  CAS  Google Scholar 

  32. Naskar AK, Bi Z, Li Y et al (2014) Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Adv 4:38213

    Article  CAS  Google Scholar 

  33. Li Y, Adams RA, Arora A et al (2017) Sustainable potassium-ion battery anodes derived from waste-tire rubber. J Electrochem Soc 164:A1234

    Article  CAS  Google Scholar 

  34. Li Y, Paranthaman MP, Akato K et al (2016) Tire-derived carbon composite anodes for sodium-ion batteries. J Power Sour 316:232

    Article  CAS  Google Scholar 

  35. Jeong S-K, Inaba M, Iriyama Y et al (2002) Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochim Acta 47:1975

  36. Jeong S-K, Inaba M, Iriyama Y et al (2008) Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction. J Power Sour 175:540

    Article  CAS  Google Scholar 

  37. Lee JY, Zhang R, Liu Z (2000) Dispersion of Sn and SnO on carbon anodes. J Power Sour 90:70

    Article  CAS  Google Scholar 

  38. Wang X, Zhou X, Yao K et al (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parans Paranthaman.

Additional information

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Levine, A.M., Zhang, J. et al. Carbon/tin oxide composite electrodes for improved lithium-ion batteries. J Appl Electrochem 48, 811–817 (2018). https://doi.org/10.1007/s10800-018-1205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1205-3

Keywords

Navigation