Skip to main content
Log in

Electrochemical characterization of anodic biofilm development in a microbial fuel cell

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy, cyclic voltammetry, and polarization tests were used to monitor the progress of the anode colonization by electrode-reducing microorganisms in a single-chamber membraneless microbial fuel cell seeded with anaerobic sludge. The electrochemical methods showed that an increase in microbial fuel cell power output coincided with a progressive decrease of the anode internal resistance and a more negative open circuit potential. Two redox systems were observed in cyclic voltammograms shortly after microbial fuel cell startup, while a redox system with a peak around −330 mV (vs. Ag/AgCl) was predominant in the mature biofilm. The redox systems were also dependent on the external resistance chosen for microbial fuel cell operation. This suggests that within the diverse microbial populations several species are capable of electron transfer to the anode, and that the microorganisms with the highest electron transfer rate become predominant. Furthermore, the growth of these electrode-reducing microorganisms can be accelerated by optimizing the microbial fuel cell electrical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schroder U (2007) Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  2. Lovley DR (2008) Curr Opin Biotechnol 19:564–571

    Article  CAS  Google Scholar 

  3. Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2009) FEMS Microbiol Rev 34:3–17

    Article  Google Scholar 

  4. Franks AE, Malvankar N, Nevin KP (2010) Biofuels 1:589–604

    Article  CAS  Google Scholar 

  5. Kiely P, Call D, Yates M, Regan J, Logan B (2010) Appl Microbiol Biotechnol 88:371–380

    Article  CAS  Google Scholar 

  6. Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Bioresour Technol 99:8895–8902

    Article  CAS  Google Scholar 

  7. Borole AP, Hamilton CY, Vishnivetskaya T, Leak D, Andras C (2009) Biochem Eng J 48:71–80

    Article  CAS  Google Scholar 

  8. He Z, Mansfeld F (2009) Energy Environ Sci 2:215–219

    Article  CAS  Google Scholar 

  9. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  10. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008) Bioelectrochemistry 72:149–154

    Article  CAS  Google Scholar 

  11. Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Biores Technol 99:8895–8902

    Article  CAS  Google Scholar 

  12. Pei-Yuan Z, Zhong-Liang L (2010) J Power Sources 195:8013–8018

    Article  Google Scholar 

  13. Manohar AK, Mansfeld F (2009) Electrochim Acta 54:1664–1670

    Article  CAS  Google Scholar 

  14. Martin E, Savadogo O, Guiot SR, Tartakovsky B (2010) Biochem Eng J 51:132–139

    Article  CAS  Google Scholar 

  15. Lyon DY, Buret F, Vogel TM, Monier J-M (2010) Bioelectrochemistry 78:2–7

    Article  CAS  Google Scholar 

  16. Li X, Hub B, Suibb S, Lei Y, Li B (2011) Biochem Eng J 54:10–15

    Article  CAS  Google Scholar 

  17. Clauwaert P, Aelterman P, Pham T, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Appl Microbiol Biotechnol 79:901–913

    Article  CAS  Google Scholar 

  18. Flandin L, Danerol AS, Bas C, Claude E, De-Moor G, Alberola N (2009) J Electrochem Soc 156:B1117–B1123

    Article  CAS  Google Scholar 

  19. Borole AP, Aaron D, Hamilton CY, Tsouris C (2010) Environ Sci Technol 44:2740–2745

    Article  CAS  Google Scholar 

  20. Ramasamy RP, Gadhamshetty V, Nadeau LJ, Johnson GR (2009) Biotechnol Bioeng 104:882–891

    Article  CAS  Google Scholar 

  21. Ramasamy RP, Ren Z, Mench MM, Regan JM (2008) Biotechnol Bioeng 101:101–108

    Article  CAS  Google Scholar 

  22. Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Biotechnol Bioeng 99:1065–1073

    Article  CAS  Google Scholar 

  23. Chung K, Okabe S (2009) Appl Microbiol Biotechnol 83:965–977

    Article  CAS  Google Scholar 

  24. Fricke K, Harnisch F, Schroder U (2008) Energy Environ Sci 1:144–147

    Article  CAS  Google Scholar 

  25. Liu Y, Harnisch F, Fricke K, Schröder U, Climent V, Feliu JM (2010) Biosens Bioelectron 25:2167–2171

    Article  CAS  Google Scholar 

  26. Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Energy Environ Sci 2:506–516

    Article  CAS  Google Scholar 

  27. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy—theory, experiment, and applications. Wiley, Hoboken

  28. Torres CI, Marcus AK, Rittmann BE (2008) ). Biotechnol Bioeng 100:872–881

    Article  CAS  Google Scholar 

  29. Cheng KY, Ho G, Cord-Ruwisch R (2008) Environ Sci Technol 42:3828–3834

    Article  CAS  Google Scholar 

  30. Chaparro AM, Gallardo B, Folgado MA, Martín AJ, Daza L (2009) Catal Today 143:237–241

    Article  CAS  Google Scholar 

  31. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Environ Sci Technol 41:2915–2921

    Google Scholar 

  32. Pinto RP, Srinivasan B, Manuel M-F, Tartakovsky B (2010) Bioresource Technol 101:5256–5265

    Article  CAS  Google Scholar 

  33. Watson VJ, Logan BE (2011) Electrochem Commun 13:54–56

    Article  CAS  Google Scholar 

  34. Grondin F, Perrier M, Tartakovsky B (2012) J Power Sources 208:18–23

    Article  CAS  Google Scholar 

  35. Premier GC, Kim JR, Michie I, Dinsdale RM, Guwy AJ (2011) J Power Sources 196:2013–2019

    Article  CAS  Google Scholar 

  36. Debabov V (2008) Microbiology 77:123–131

    Article  CAS  Google Scholar 

  37. Hernandez ME, Newman DK (2001) Cell Mol Life Sci 58:1562–1571

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, Toronto

Download references

Acknowledgments

Assistance of Punita Mehta in performing protein analysis is greatly appreciated. Funding for this study was provided by NSERC and NRC Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tartakovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, E., Savadogo, O., Guiot, S.R. et al. Electrochemical characterization of anodic biofilm development in a microbial fuel cell. J Appl Electrochem 43, 533–540 (2013). https://doi.org/10.1007/s10800-013-0537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0537-2

Keywords

Navigation