Skip to main content
Log in

Hydrogen embrittlement of Zn-, Zn–Ni-, and Cd-coated high strength steel

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Sacrificial coatings, such as Zn and Cd, are used to protect steel against corrosion. During the electrodeposition of metals, hydrogen is evolved due to electrolysis. The evolved hydrogen may diffuse outward and become trapped in the substrate/coating interface or migrate inward into the steel lattice causing delayed embrittlement when the component is subjected to stress. This study reports two principal variables for Zn, Zn–Ni, and Cd coatings: (i) the quantity of hydrogen absorbed by the coating and substrate by vacuum thermal desorption and (ii) the permeability of the coating material to hydrogen by electrochemical permeation. The findings were analyzed in correlation with the microstructural characteristics of both the coating material and the coating/substrate interface. With Zn–Ni, both coating process and coating material combined to significantly reduce the risk of internal hydrogen embrittlement by (i) introducing the least amount of hydrogen during the electrodeposition process and (ii) by the ease with which hydrogen can be extracted by baking due to the presence of cracks in the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Oriani RA (1978) Hydrogen embrittlement of steels. Annu Rev Mater Sci 8(1):327–357. doi:10.1146/annurev.ms.08.080178.001551

    Article  CAS  Google Scholar 

  2. Oriani RA, Hirth JP, Smialowski M (1985) Hydrogen degradation of ferrous alloys. William Andrew Publishing, Noyes

    Google Scholar 

  3. Brahimi S, and Yue S (2009) Effect of surface processing variables and coating characteristics on hydrogen embrittlement of steel fasteners part 2: electroplating and non electrolytic processes. In: Louisville KY (ed.) SUR/FIN, NASF, 16 June 2009

  4. Coleman DH, Popov BN, White RE (1998) Hydrogen permeation inhibition by thin layer Zn–Ni alloy electrodeposition. J Appl Electrochem 28(9):889–894. doi:10.1023/A:1003408230951

    Article  CAS  Google Scholar 

  5. Figueroa D, Robinson MJ (2008) The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels. Corros Sci 50(4):1066–1079. doi:10.1016/j.corsci.2007.11.023

    Article  CAS  Google Scholar 

  6. Hillier EMK, Robinson MJ (2004) Hydrogen embrittlement of high strength steel electroplated with zinc-cobalt alloys. Corros Sci 46(3):715–727. doi:10.1016/S0010-938x(03)00180-X

    Article  CAS  Google Scholar 

  7. Hillier EMK, Robinson MJ (2006) Permeation measurements to study hydrogen uptake by steel electroplated with zinc-cobalt alloys. Corros Sci 48(5):1019–1035. doi:10.1016/j.corsci.2005.05.009

    Article  CAS  Google Scholar 

  8. ASTM-F1941-00 (2006) F1941-00 Standard specification for electrodeposited coatings on threaded fasteners (Unified Inch Screw Threads (UN/UNR)). ASTM International, West Conshohocken, pp 19428–2959. www.astm.org. doi:10.1520/F1941-07

  9. ASTM-F519-10 (2010) F519-10, Standard test method for mechanical hydrogen embrittlement evaluation of plating/coating processes and service environments. ASTM International, West Conshohocken. www.astm.org. doi:10.1520/F0519-10

  10. MIL-STD-870C (2009) U.S. military standard (USAF) on cadmium plating, low embrittlement, electrodeposition. Department of defence standard practice

  11. Turnbull A, Hutchings RB, Ferriss DH (1997) Modelling of thermal desorption of hydrogen from metals. Mater Sci Eng 238(2):317–328. doi:10.1016/S0921-5093(97)00426-7

    Article  Google Scholar 

  12. Addach H, Bercot P, Wery M, Rezrazi M (2004) Quantitative determination of hydrogen in solids by gas chromatography. J Chromatogr A 1057(1–2):219–223. doi:10.1016/j.chroma.2004.09.067

    CAS  Google Scholar 

  13. ASTM-G148-97 (2011) G148-97 Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical Technique. ASTM International, West Conshohocken. www.astm.org. doi:10.1520/G0148-97R11

  14. Devanathan MAV, Stachurski Z (1962) The adsorption and diffusion of electrolytic hydrogen in palladium. Proc R Soc Lond A 270(1340):90–102. doi:10.1098/rspa.1962.0205

    Article  CAS  Google Scholar 

  15. Thomas BK, Fray DJ (1981) The effect of additives on the morphology of zinc electrodeposited from a zinc-chloride electrolyte at high-current densities. J Appl Electrochem 11(6):677–683. doi:10.1007/bf00615170

    Article  CAS  Google Scholar 

  16. Bories C, Bonino JP, Rousset A (1999) Structure and thermal stability of zinc-nickel electrodeposits. J Appl Electrochem 29(9):1045–1051. doi:10.1023/a:1003574625112

    Article  CAS  Google Scholar 

  17. Brooks I, Erb U (2001) Hardness of electrodeposited microcrystalline and nanocrystalline gamma-phase Zn–Ni alloys. Scripta Mater 44(5):853–858. doi:10.1016/s1359-6462(00)00680-1

    Article  CAS  Google Scholar 

  18. Bruet-Hotellaz, Bonino JP, Rousset A, Marolleau, Chauveau E (1999) Structure of zinc-nickel alloy electrodeposits. J Mater Sci 34(4):881–886. doi:10.1023/a:1004553803788

    Article  CAS  Google Scholar 

  19. Morón LE, Méndez A, Castañeda F, Flores JG, Ortiz-Frade L, Meas Y, Trejo G (2011) Electrodeposition and corrosion behavior of Zn coatings formed using as brighteners arene additives of different structure. Surf Coat Technol 205(21–22):4985–4992. doi:10.1016/j.surfcoat.2011.04.090

    Article  Google Scholar 

  20. Abdelhalim AM, Baghlaf AO, Sobahi MI (1984) Effect of some addition agents on the electrodeposition of cadmium from acidic chloride baths. Surf Technol 22(2):129–142. doi:10.1016/0376-4583(84)90049-9

    Article  Google Scholar 

  21. Elhalim AMA, Sobahi MI (1983) Effect of bath constituents and some plating variables on the electrodeposition of cadmium from acidic chloride baths. Surf Technol 19(1):45–57. doi:10.1016/0376-4583(83)90018-3

    Article  Google Scholar 

  22. Lin C, Lee H, Hsieh S (1999) Microcracking of flash coatings and its effect on the Zn–Ni coating adhesion of electrodeposited sheet steel. Metall Mate Trans A 30(2):437–448. doi:10.1007/s11661-999-0333-0

    Article  Google Scholar 

  23. Sasaki T, Hirose Y (1994) Residual stress distribution in electroplated Zn–Ni alloy layer determined by X-ray diffraction. Thin Solid Films 253(1–2):356–361. doi:10.1016/0040-6090(94)90347-6

    Article  CAS  Google Scholar 

  24. Boes N, Züchner H (1976) Electrochemical methods for studying diffusion, permeation and solubility of hydrogen in metals. J Less Common Metals 49:223–240. doi:10.1016/0022-5088(76)90037-0

    Article  CAS  Google Scholar 

  25. Cao Y (2002) Influence of structure of palladium and nickel based membranes on hydrogen permeation. Thesis (Ph D), McGill University, Montreal, Quebec, Canada

  26. Early JG (1978) Hydrogen diffusion in palladium by galvanostatic charging. Acta Metall 26(8):1215–1223. doi:10.1016/0001-6160(78)90005-6

    Article  CAS  Google Scholar 

  27. Brahimi S (2007) Effect of surface processing variables on hydrogen embrittlement of steel fasteners. Thesis (M Eng), Mcgill University, Montreal, Quebec, Canada

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Sriraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriraman, K.R., Brahimi, S., Szpunar, J.A. et al. Hydrogen embrittlement of Zn-, Zn–Ni-, and Cd-coated high strength steel. J Appl Electrochem 43, 441–451 (2013). https://doi.org/10.1007/s10800-013-0529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0529-2

Keywords

Navigation