Skip to main content
Log in

Carbon nanotube-modified biocatalytic microelectrodes with multiscale porosity

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Macropores were introduced into nanotube matrices via polystyrene bead templates, and the resulting matrix was applied to carbon fiber microelectrodes as a porous medium for immobilization of enzymatic biocatalysts. The macropores were found to increase the electrochemically active surface area by twofold at a nominal polystyrene mass fraction of 73%. The modified electrodes were further coated with biocatalyst hydrogel comprising glucose oxidase, redox polymer, and crosslinker to create a glucose oxidizing bioanode. Glucose oxidation current density also increased two fold after introduction of the macropores. Focused ion beam cut cross-sections reveal complete adsorption of the enzyme-hydrogel matrix into the CNT layer. This templating technique is a promising approach to the maximization of surface area and transport in bioelectrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Willner I, Yan Y-M, Willner B, Tel-Vered R (2009) Fuel Cells 9:7–24

    Article  CAS  Google Scholar 

  2. Calabrese Barton S, Gallaway J, Atanassov P (2004) Chem Rev 104:4867–4886

    Article  Google Scholar 

  3. Gregg BA, Heller A (1991) J Phys Chem 95:5970–5975

    Article  CAS  Google Scholar 

  4. Nöll T, Nöll G (2011) Chem Soc Rev 40:3564–3576

    Article  Google Scholar 

  5. Mano N, Mao F, Heller A (2003) J Am Chem Soc 125:6588–6594

    Article  CAS  Google Scholar 

  6. Mao F, Mano N, Heller A (2003) J Am Chem Soc 125:4951–4957

    Article  CAS  Google Scholar 

  7. Cooney MJ, Lau C, Windmeisser M, Liaw BY, Klotzbach T, Minteer SD (2008) J Mater Chem 18:667

    Article  CAS  Google Scholar 

  8. Kim J, Jia H, Wang P (2006) Biotechnol Adv 24:296–308

    Article  CAS  Google Scholar 

  9. Calabrese Barton S, Sun Y, Chandra B, White S, Hone J (2007) Electrochem Solid-State Lett 10:B96

    Article  Google Scholar 

  10. Calabrese Barton S, Kim H-H, Binyamin G, Zhang Y, Heller A (2001) J Am Chem Soc 123:5802–5803

    Article  CAS  Google Scholar 

  11. Calabrese Barton S, Kim H-H, Binyamin G, Zhang Y, Heller A (2001) J Phys Chem B 105:11917–11921

    Article  Google Scholar 

  12. Ivnitski D, Branch B, Atanassov P, Apblett C (2006) Electrochem Commun 8:1204–1210

    Article  CAS  Google Scholar 

  13. Chen T, Calabrese Barton S, Binyamin G, Gao Z, Zhang Y, Kim H-H, Heller A (2001) J Am Chem Soc 123:8630–8631

    Article  CAS  Google Scholar 

  14. Mano N, Mao F, Heller A (2002) J Am Chem Soc 124:12962–12963

    Article  CAS  Google Scholar 

  15. Verbrugge MW (1996) J Electrochem Soc 143:600

    Article  CAS  Google Scholar 

  16. Verbrugge MW (1996) J Electrochem Soc 143:24

    Article  CAS  Google Scholar 

  17. Pishko MV, Michael AC, Heller A (1991) Anal Chem 63:2268–2272

    Article  CAS  Google Scholar 

  18. Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Nat Commun 1:1–7

    Google Scholar 

  19. Chen R-S, Huang W-H, Tong H, Wang Z-L, Cheng J-K (2003) Anal Chem 75:6341–6345

    Article  CAS  Google Scholar 

  20. Zhao X, Lu X, Tze WTY, Wang P (2010) Biosens Bioelectron 25:2343–2350

    Article  CAS  Google Scholar 

  21. Wen H, Nallathambi V, Chakraborty D, Calabrese Barton S (2011) Microchimica Acta 175:283–289

    Google Scholar 

  22. Velev OD, Kaler EW (2000) Adv Mater 12:531–534

    Article  CAS  Google Scholar 

  23. Velev O, Jede T, Lobo R, Lenhoff A (1997) Nature 389:447–448

    Article  CAS  Google Scholar 

  24. Iskandar F, Nandiyanto BD, Yun KM, Hogan CJ, Okuyama K, Biswas P (2007) Adv Mater 19:1408–1412

    Article  CAS  Google Scholar 

  25. Holland BT, Abrams L, Stein A (1999) J Am Chem Soc 121:4308–4309

    Article  CAS  Google Scholar 

  26. Jiang P, Cizeron J, Bertone JF, Colvin VL (1999) J Am Chem Soc 121:7957–7958

    Article  CAS  Google Scholar 

  27. Velev O, Tessier P, Lenhoff A, Kaler E (1999) Nature 401:548

    Article  CAS  Google Scholar 

  28. Flexer V, Brun N, Backov R, Mano N (2010) Energy Environ Sci 3:1302

    Article  CAS  Google Scholar 

  29. Imhof A, Pine D (1997) Nature 389:948–950

    Article  CAS  Google Scholar 

  30. Subramanian G, Manoharan VN, Thorne JD, Pine DJ (1999) Adv Mater 11:1261–1265

    Article  CAS  Google Scholar 

  31. Vlasov YA, Deutsch M, Norris DJ (2000) Appl Phys Lett 76: 1627

    Google Scholar 

  32. Chang H, Joo SH, Pak C (2007) J Mater Chem 17:3078

    Article  CAS  Google Scholar 

  33. Chai GS, Shin IS, Yu J-S (2004) Adv Mater 16:2057–2061

    Article  CAS  Google Scholar 

  34. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, Hoboken

    Google Scholar 

  35. Binyamin G (1999) J Electrochem Soc 146:2965

    Article  CAS  Google Scholar 

  36. Zaborsky O (1974) Biochem Biophys Res Commun 61:210–216

    Article  CAS  Google Scholar 

  37. Aoki A, Rajagopalan R, Heller A (1995) J Phys Chem 99:5102–5110

    Article  CAS  Google Scholar 

  38. Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Nano Lett 2: 615

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, H., Bambhania, H.M. & Calabrese Barton, S. Carbon nanotube-modified biocatalytic microelectrodes with multiscale porosity. J Appl Electrochem 42, 145–151 (2012). https://doi.org/10.1007/s10800-012-0381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0381-9

Keywords

Navigation