Skip to main content

Advertisement

Log in

Micro-tubular solid oxide fuel cells fabricated from hollow fibres

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Recent literature is reviewed on a phase inversion process followed by sintering, used to fabricate ceramic hollow fibres (HFs) as precursors to micro-tubular solid oxide fuel cells (MT-SOFCs) with sub-millimetre inner diameters. These aimed to address the outstanding technological and economic issues that have delayed mass production of SOFCs, by increasing electrode surface areas per unit volume relative to planar structures, increasing power outputs per unit volume/mass, facilitating sealing at high temperatures, and decreasing fabrication costs per kW. Some recent experimental results are presented of the effects of temperature, hydrogen flow rate, thermal cycling and time of NiO reduction with H2 on the subsequent performance of 25 mm long H2|Ni–CGO|CGO|LSCF|air MT-SOFCs, incorporating cerium–gadolinium oxide (CGO) electrolyte, nickel anodes and lanthanum strontium cobalt ferrite–CGO (LSCF–CGO) cermet cathodes, designed to operate at 500–600 °C. Maximum power densities of 3–5.5 kW m−2 were achieved as the temperature was increased from 550–600 °C. The co-extruded MT-SOFCs were resilient to three thermal cycles when heated to operating temperature in ca. 5 min. Their performance was intimately related to the reduction time, suggesting slow conversion of the NiO to Ni within the fabricated anodes. At constant cell voltage, mass transport limited current densities increased from ca. 11 to ca. 13.5 kA m−2 as hydrogen flow rates were increased from 15 to 60 cm3 min−1, though had residual NiO in the anode been fully reduced, current densities would have been significantly greater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grande FD, Thursfield A, Kanawka K, Droushiotis N, Doraswami U, Li K, Kelsall GH, Metcalfe IS (2009) Solid State Ion 180(11–13):800

    Article  Google Scholar 

  2. Droushiotis N, Doraswami U, Kanawka K, Kelsall GH, Li K (2009) Solid State Ion 180(17–19):1091

    Article  CAS  Google Scholar 

  3. Howe KS, Thompson GJ, Kendall K (2011) J Power Sources 196:1677

    Article  CAS  Google Scholar 

  4. Droushiotis N, Doraswami U, Kelsall GH (2009) Trans Electrochem Soc 25(2):1241

    Google Scholar 

  5. Brett DJL, Atkinson A, Brandon NP, Skinner SJ (2008) Chem Soc Rev 37:1568

    Article  CAS  Google Scholar 

  6. Othman MdHD, Droushiotis N, Wu Z, Kelsall GH, Li K (2011) J Power Sources 196:5035

    Article  CAS  Google Scholar 

  7. Othman MdHD (2011) High performance micro-tubular solid oxide fuel cell, PhD Thesis, Imperial College London

  8. Doraswami U, Droushiotis N, Kelsall GH (2010) Electrochim Acta 55:3766

    Article  CAS  Google Scholar 

  9. Doraswami U (2010) Modelling of micro-tubular hollow fibre solid oxide fuel cells. PhD Thesis, Imperial College London

  10. Droushiotis N, Othman MdHD, Doraswami U, Wu Z, Kelsall GH, Li K (2009) Electrochem Commun 11:1799

    Article  CAS  Google Scholar 

  11. Droushiotis N, Doraswami U, Kelsall GH (2009) Trans Electrochem Soc 25(2):665

    CAS  Google Scholar 

  12. Othman MdHD, Wu Z, Droushiotis N, Doraswami U, Kelsall GH, Li K (2010) J Membr Sci 351:196

    Article  CAS  Google Scholar 

  13. Droushiotis N, Doraswami U, Ivey D, Othman MdHD, Li K, Kelsall GH (2010) Electrochem Commun 12:792

    Article  CAS  Google Scholar 

  14. Othman MdHD, Droushiotis N, Wu Z, Kelsall GH, Li K (2011) Advanced materials 23:2480

    Article  CAS  Google Scholar 

  15. Droushiotis ND (2011) Fabrication and characterization of hollow fibre micro-tubular solid oxide fuel cells. PhD Thesis, Imperial College London

  16. Othman MdHD, Droushiotis N, Wu Z, Kanawka K, Kelsall GH, Li K (2010) J Membr Sci 365(1–2):382

    Article  CAS  Google Scholar 

  17. Othman MdHD, Wu Z, Droushiotis N, Kelsall GH, Li K (2010) J Membr Sci 360(1–2):410

    Article  CAS  Google Scholar 

  18. Doraswami U, Shearing P, Droushiotis N, Li K, Brandon NP, Kelsall GH (2009) Solid State Ion 192:494

    Article  Google Scholar 

  19. Yang NT, Tan XY, Ma ZF (2008) J Power Sources 183:14

    Article  CAS  Google Scholar 

  20. Yang C, Li W, Zhang S, Bi L, Peng R, Chen C, Liu W (2009) J Power Sources 187:90

    Article  CAS  Google Scholar 

  21. Jin C, Liu J, Li LH, Bai YH (2009) J Membr Sci 341:233

    Article  CAS  Google Scholar 

  22. Zhang X, Lin B, Ling Y, Dong Y, Meng G, Liu X (2010) Int J Hydrog Energy 35:8654

    Article  CAS  Google Scholar 

  23. Yang C, Jin C, Chen F (2010) Electrochim Acta 56:80

    Article  CAS  Google Scholar 

  24. Zhao L, Zhang X, Hea B, Liu B, Xia C (2011) J Power Sources 196:962

    Article  CAS  Google Scholar 

  25. Kendall K (2009) Int J Appl Ceram Technol 7:1

    Article  Google Scholar 

  26. Suzuki T, Yamaguchi T, Fujishiro Y, Awano M (2006) J Power Sources 160:73

    Article  CAS  Google Scholar 

  27. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2008) J Alloys Compd 451:632

    Article  CAS  Google Scholar 

  28. NIST-JANAF (1998) Thermochemical tables, 4th edn. J Phys Chem Ref Data Monogr 9:1–1951. http://webbook.nist.gov/chemistry/. Accessed 24 July 2011

  29. Song HY, Wadsworth ME (eds) (1979) Rate processes in extractive metallurgy. Plenum, New York, pp 303

  30. Szekely J, Evans JW (1971) Chem Eng Sci 26:1901

    Article  CAS  Google Scholar 

  31. Szekely J, Evans JW (1973) Chem Eng Sci 28:1975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the UK Engineering and Physical Sciences Research Council and the British Council for studentships for ND and UD, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Kelsall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droushiotis, N., Doraswami, U., Kelsall, G.H. et al. Micro-tubular solid oxide fuel cells fabricated from hollow fibres. J Appl Electrochem 41, 1005–1012 (2011). https://doi.org/10.1007/s10800-011-0334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0334-8

Keywords

Navigation