Skip to main content
Log in

Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

NiO films for lithium-ion batteries were deposited on copper plates and foam nickel substrates by electrodeposition and subsequent heat treatment at 300 °C. At a discharge/charge rate of 0.1 C, foam NiO films delivered reversible capacity larger than 650 mAh g−1 and capacity retention over 93% after 50 cycles. NiO films deposited on foam nickel exhibited higher reversible capacity, better cyclability, as well as higher rate capability than those on copper plates. The unique three-dimensionally porous morphologies of foam NiO films were responsible for the better electrochemical performance, which provided not only high electrode/electrolyte contact area but also a good electronic conduction matrix. The present finding offers a new pathway for the large scale fabrication of high-energy-density electrodes for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    Article  CAS  Google Scholar 

  2. Arico S, Peter B, Bruno S, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366

    Article  CAS  Google Scholar 

  3. Wang SQ, Zhang JY, Chen CH (2007) Scr Mater 57:337

    Article  CAS  Google Scholar 

  4. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) J Phys Chem B 108:5547

    Article  CAS  Google Scholar 

  5. Li YG, Tan B, Wu YY (2008) Chem Mater 20:567

    Article  CAS  Google Scholar 

  6. Oh SW, Bang HJ, Bae YC (2007) J Power Source 173:502

    Article  CAS  Google Scholar 

  7. Needham SA, Wang GX, Liu HK (2006) J Power Source 159:254

    Article  CAS  Google Scholar 

  8. Wang X, Li L, Zhang YG (2006) Cryst Growth Des 6:2163

    Article  CAS  Google Scholar 

  9. Yuan L, Guo ZP, Konstantinov K (2006) Electrochem Solid State Lett 9:A524

    Article  CAS  Google Scholar 

  10. Huang XH, Tu JP, Zhang CQ, Chen XT, Yuan YF, Wu HM (2007) Electrochim Acta 52:4177

    Article  CAS  Google Scholar 

  11. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Electrochem Commun 9:1180

    Article  CAS  Google Scholar 

  12. Yoshio I, Tadahiko K, Akihiro M, Yukio M, Tsutomu M (1997) Science 276:1395

    Article  Google Scholar 

  13. Moriguchi I, Hidaka R, Yamada H, Kudo T, Murakami H, Nakashima N (2006) Adv Mater 18:69

    Article  CAS  Google Scholar 

  14. Pan QM, Liu J (2008) J Solid State Electrochem. doi:10.1007/s10008-008-0740-y

    Google Scholar 

  15. Yu Y, Chen CH, Shui JL, Xie S (2005) Angew Chem Int Ed 44:7085

    Article  CAS  Google Scholar 

  16. Yu Y, Shi Y, Chen CH (2007) Nanotechnology 18:055706

    Article  Google Scholar 

  17. Huang XH, Tu JP, Zeng ZY, Xiang JY, Zhao XB (2008) J Electrochem Soc 155:A438

    Article  CAS  Google Scholar 

  18. Wang HB, Pan QM, Zhao JW, Yin GP, Zuo PJ (2007) J Power Sources 167:206

    Article  CAS  Google Scholar 

  19. Izaki M, Omi T (1996) J Electrochem Soc 143:L53

    Article  CAS  Google Scholar 

  20. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285

    Article  CAS  Google Scholar 

  21. Debart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) J Electrochem Soc 148:A1266

    Article  CAS  Google Scholar 

  22. Zhang CQ, Tu JP, Yuan YF, Huang XH, Chen XT, Mao F (2007) J Electrochem Soc 154:A65

    Article  CAS  Google Scholar 

  23. Tarascon M, Morcrette M, Dupont L, Chabre Y, Payen C, Larcher D, Pralong VJ (2003) J Electrochem Soc 150:A732

    Article  CAS  Google Scholar 

  24. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM (2002) J Electrochem Soc 149:A627

    Article  CAS  Google Scholar 

  25. Huang XH, Tu JP, Xia XH, Wang XL, Xiang JY (2008) Electrochem Commun 10:1288

    Article  CAS  Google Scholar 

  26. Hosono E, Fujihara S, Honma I, Zhou H (2006) Electrochem Commun 8:284

    Article  CAS  Google Scholar 

  27. Martin CR, Mitchell DT (1999) Electroanal Chem 21:1

    CAS  Google Scholar 

  28. Sorensen EM, Barry SJ, Jung HK, Rondinelli JR, Vaughey JT, Poeppelmeier KR (2006) Chem Mater 18:482

    Article  CAS  Google Scholar 

  29. Sauvage F, Baudrin E, Gengembre L, Tarascon JM (2005) Solid State Ion 176:1869

    Article  CAS  Google Scholar 

  30. Pan QM, Wang M (2008) J Electrochem Soc 155:A452

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Natural science foundation of China (Grant No. 50803013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmin Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Pan, Q., Wang, X. et al. Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. J Appl Electrochem 39, 1597–1602 (2009). https://doi.org/10.1007/s10800-009-9848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9848-8

Keywords

Navigation