Skip to main content
Log in

A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Many of the liquids that are used as electrical insulators are nonpolar or slightly polar petroleum-derived hydrocarbons, such as the ones used for cable and/or transformer oils. In this work, semi-empirical expressions with no adjustable parameters for the dielectric constant and the polarizability of nonpolar and slightly polar hydrocarbons and their mixtures are proposed and validated. The expressions that were derived using the Vargas–Chapman One-Third rule require the mass density and the molecular weight of the substance of interest. The equations were successfully tested for various hydrocarbons and polymers with dipole moments <0.23 and densities from 500 to 1200 kg\(\cdot \) \(\hbox {m}^{-3}\). The predictions are in good agreement with the experimental data in a wide range of temperatures and pressures. The proposed expressions eliminate the need of extensive experimental data and require less input parameters compared to existing correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

n :

Refractive index

\(R_\mathrm{{m}}\) :

Molar refractivity (\(\hbox {cm}^{3} \cdot \hbox {mol}^{-1}\))

\(\rho \) :

Density (\(\hbox {g} \cdot \hbox {cm}^{-3}\))

\(\rho ^{0}\) :

Density of molecules per unit mass (\(\hbox {g}\cdot \text{ cm }^{-3}\))

\(\alpha \) :

Polarizability (\(\hbox {cm}^{3}\))

\(N_\mathrm{{a}}\) :

Avogadro number (\(6.022 \times 10^{23}\,\hbox {mol}^{-1}\))

V :

Molar volume (\(\hbox {cm}^{3} \cdot \hbox {mol}^{-1}\))

Mw :

Molecular weight (\(\hbox {g}\cdot \hbox {mol}^{-1}\))

k :

Dielectric constant

References

  1. P. Paillou, K.L. Mitchell, S.D. Wall, G. Ruffié, C. Wood, R.D. Lorenz, E.R. Stofan, J.I. Lunine, R. Lopes, P. Encrenaz, Geophys. Res. Lett. 35, L05202 (2008)

    ADS  Google Scholar 

  2. S. Sanyude, R.A. Locock, L.A. Pagliaro, J. Pharm. Sci. 80, 674 (1991)

    Article  Google Scholar 

  3. C.M. McLoughlin, W.A.M. McMinn, T.R.A. Magee, Powder Technol. 134, 40 (2003)

    Article  Google Scholar 

  4. D.W. Brazier, G.R. Freeman, Can. J. Chem. 47, 885 (1969)

    Article  Google Scholar 

  5. B.M. Hasch, M.A. Meilchen, S.H. Lee, M.A. McHugh, J. Polym. Sci. Pol. Phys. 30, 1365 (1992)

    Article  ADS  Google Scholar 

  6. F.M. Vargas, D.L. Gonzalez, J.L. Creek, J. Wang, J. Buckley, G.J. Hirasaki, W.G. Chapman, Energy Fuel. 23, 1147 (2009)

    Article  Google Scholar 

  7. J. Chappius, Ch. Riviere, Ann. Chem. Phys. 14, 5 (1888)

    Google Scholar 

  8. A.F. Forziati, J. Res. Nat. Bur. Stand. 44, 373 (1950)

    Article  Google Scholar 

  9. F.M. Vargas, W.G. Chapman, Fluid Phase Equilib. 290, 103 (2010)

    Article  Google Scholar 

  10. A.D. Sen, V.G. Anicich, T. Arakelian, J. Phys. D. Appl. Phys. 25, 516 (1992)

    Article  ADS  Google Scholar 

  11. N.E. Hill, W.E. Vaughan, A.H. Price, M. Davies, Dielectric Properties and Molecular Behaviour (Van Nostrand Reinhold, London, 1969)

    Google Scholar 

  12. D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, IEEE Trans. Instrum. Meas. 38, 789 (1989)

    Article  Google Scholar 

  13. J.G. Kirkwood, J. Chem. Phys. 4, 592 (1936)

    Article  ADS  Google Scholar 

  14. J.D. Ramshaw, Physica 62, 1 (1972)

    Article  ADS  Google Scholar 

  15. U. Bernini, G. Abbate, E. Ragozzino, J. Phys. D Appl. Phys. 17, 1871 (1984)

    Article  ADS  Google Scholar 

  16. E. Megnassan, D. Le Goff, J. Mol. Liq. 59, 37 (1994)

    Article  Google Scholar 

  17. J.P. Liu, W.V. Wilding, N.F. Giles, R.L. Rowley, J. Chem. Eng. Data 55, 41 (2010)

    Article  Google Scholar 

  18. A.H. Harvey, E.W. Lemmon, Int. J. Thermophys. 26, 31 (2005)

    Article  ADS  Google Scholar 

  19. W. Haynes, CRC Handbook of Chemistry and Physics, 93rd edn. (CPC Press, Boca Raton, 2012)

    Google Scholar 

  20. NIST Chemistry Web-Book, http://webbook.nist.gov/chemistry/fluid/

  21. D.R. Lide, CRC Handbook of Chemistry and Physics, 73rd edn. (CPC Press, Boca Raton, 1992)

    Google Scholar 

  22. N. Gee, K. Shinsaka, J.P. Dodelet, G.R. Freeman, J. Chem. Thermodyn. 18, 221 (1986)

    Article  Google Scholar 

  23. F.I. Mopsik, J. Chem. Phys. 50, 2559 (1969)

    Article  ADS  Google Scholar 

  24. F.I. Mopsik, J. Res. Nbs. A Phys. Ch. 71A, 287 (1967)

    Article  Google Scholar 

  25. J.F. Skinner, E.L. Cussler, R.M. Fuoss, J. Phys. Chem. US. 72, 1057 (1968)

    Article  Google Scholar 

  26. S.R. Panuganti, F.M. Vargas, D.L. Gonzalez, A.S. Kurup, W.G. Chapman, Fuel 93, 658 (2012)

    Article  Google Scholar 

  27. International Association of Plastics Distribution: Method—ASTM D792 (2012)

  28. International Association of Plastics Distribution: Method—ASTM D150 (2012)

  29. E.V. Anslyn, D.A. Dougherty, Modern Physical Organic Chemistry (University Science, California, 2006)

    Google Scholar 

  30. A. Hinchliff, Ab Initio Determination of Molecular Properties, ed. by A. Hilger (CRC Press, Bristol, 1987)

  31. Y. Yamaguchi, Y. Osamura, J.D. Goddard, H.F. Schaefer, A New Dimension to Quantum Chemistry, Analytical Derivative Methods, in Ab Initio Molecular Electronic Structure Theory (Oxford University Press, New York, 1994)

    Google Scholar 

Download references

Acknowledgments

This work was undertaken with the generous financial support from the Research and Development Oil Subcommittee of the Abu Dhabi National Oil Company (ADNOC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panuganti, S.R., Wang, F., Chapman, W.G. et al. A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons. Int J Thermophys 37, 75 (2016). https://doi.org/10.1007/s10765-016-2075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2075-8

Keywords

Navigation