Skip to main content
Log in

Thermophysical Properties of Electrically Conductive SiC–(Nb,Ti–C)ss-Based Cermets

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Multifunctional cermets are being developed for a range of novel applications. The present paper deals with thermophysical properties of electrically conductive SiC-based cermets. The cermets were prepared by in situ reaction using a two-step sintering process. The thermophysical properties, namely, thermal conductivity, thermal diffusivity, and heat capacity, were measured using the pulse transient technique. The microstructure and chemical composition of the samples were characterized by SEM (scanning electron microscopy), TEM (transmission electron microscopy), STEM (scanning transmission electron microscopy), and EDX (energy dispersive X-ray analysis) techniques. The observed thermophysical data were correlated with the observed microstructures and chemical nature of the SiC-based cermets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Schneider, Engineered Materials Handbook, vol. 4 (ASM International, Materials Park, 1987)

  2. Fa L., Dongmei Z., Xiaolei S., Wancheng Z.: Mater. Sci. Eng. A 458, 7 (2007)

    Article  Google Scholar 

  3. Lee S.P., Shin Y.S., Bae D.S., Min B.H., Park J.S., Kohyama A.: Fusion Eng. Des. 81, 963 (2006)

    Article  Google Scholar 

  4. Morisada Y., Miyamoto Y., Takaura Y., Hirota K., Tamari N.: Int. J. Refract. Met. Hard Mater. 25, 322 (2007)

    Article  Google Scholar 

  5. Zhou Y., Hirao K., Watari K., Yamauchi Y., Kanzaki S.: J. Eur. Ceram. Soc. 24, 265 (2004)

    Article  Google Scholar 

  6. Sigl L.S.: J. Eur. Ceram. Soc. 23, 1115 (2003)

    Article  Google Scholar 

  7. Volz E., Roosen A., Hartung W., Winnacker A.: J. Eur. Ceram. Soc. 21, 2089 (2001)

    Article  Google Scholar 

  8. Nakano H., Watari K., Kinemuchi Y., Ishizaki K., Urabe K.: J. Eur. Ceram. Soc. 24, 3685 (2004)

    Article  Google Scholar 

  9. Snead L.L.: J. Nucl. Mater. 329, 524 (2004)

    Article  ADS  Google Scholar 

  10. Möslang A., Wiss T.: Nat. Mater. 5, 679 (2006)

    Article  ADS  Google Scholar 

  11. Katoh Y., Snead L.L., Henager C.H. Jr., Hesegawa A., Kohyama A., Riccardi B., Hegeman H.: J. Nucl. Mater. 367, 659 (2007)

    Article  ADS  Google Scholar 

  12. Zackrisson J., Andrén H.O.: Int. J. Refract. Met. Hard Mater. 17, 265 (1999)

    Article  Google Scholar 

  13. Kim H.C., Shon I.J., Yoon J.K., Doh J.M., Munir Z.A.: Int. J. Refract. Met. Hard Mater. 24, 427 (2006)

    Article  Google Scholar 

  14. Cai K., Nan C.W., Min X.M.: Mater. Res. Bull. 32, 1327 (1997)

    Article  Google Scholar 

  15. Raddatz O., Schneider G.A., Mackens W., Voss H., Claussen N.: J. Eur. Ceram. Soc. 20, 2261 (2000)

    Article  Google Scholar 

  16. Monteverde F., Medri V., Bellosi A.: J. Eur. Ceram. Soc. 22, 2587 (2002)

    Article  Google Scholar 

  17. Liu N., Yin W., Zhu L.: Mater. Sci. Eng. A 445, 707 (2007)

    Google Scholar 

  18. Zhang H., Yan J., Zhang X., Tang S.: Int. J. Refract. Met. Hard Mater. 24, 236 (2006)

    Article  Google Scholar 

  19. Ozawa K., Nozawa T., Katoh Y., Hinoki T., Kohyama A.: J. Nucl. Mater. 367, 713 (2007)

    Article  ADS  Google Scholar 

  20. Balog M., Šajgalík P., Hofer F., Warbichler P., Fröhlich K., Vávra O., Janega J., Huang J.L.: J. Eur. Ceram. Soc. 26, 1259 (2006)

    Article  Google Scholar 

  21. L’. Kubičár, in Pulse Method of Measuring Basic Thermophysical Parameters, ed. by G. Svehla. Comprehensive Analytical Chemistry, Vol. XII, Thermal Analysis, Part E (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1990), p. 1350

  22. L’. Kubičár, V. Boháč, Review of several dynamic methods of measuring thermophysical parameters, in Proceedings of 24th Int. Conf. on Thermal Conductivity/12th Int. Thermal Expansion Symposium, ed. by P.S. Gaal, D.E. Apostolescu (Technomic Pub. Co., Lancaster, Pennsylvania,1999), pp. 135–149

  23. Maglić K.D., Cezairliyan A., Peletsky V.E.: Compendium of Thermophysical Property Measurement Methods, Vol. 2, Recommended Measurement Techniques and Practices, pp. 643. Plenum Press, New York (1992)

    Google Scholar 

  24. Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids, 2nd edn, pp. 496. Oxford University Press, Oxford (1959)

    Google Scholar 

  25. Kubičár L’., Vretenár V., Boháč V., Tiano P.: Int. J. Thermophys. 27, 220 (2006)

    Article  Google Scholar 

  26. A.E. McHale, Phase Equilibria Diagrams, vol.X (The American Ceramics Society, Westerville, 1994)

  27. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2005). http://www.hbcpnetbase.com

  28. Pierson H.O.: Handbook of Refractory Carbides and Nitrides, pp. 362. William Andrew Publishing/Noyes, Norwich (1996)

    Google Scholar 

  29. Dean J.A.: Lange’s Handbook of Chemistry, 15th edn. McGraw-Hill, New York (1999)

    Google Scholar 

  30. Klein P.H., Croft W.J.: J. Appl. Phys. 38, 1603 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viliam Vretenár.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balog, M., Vretenár, V., Vávra, I. et al. Thermophysical Properties of Electrically Conductive SiC–(Nb,Ti–C)ss-Based Cermets. Int J Thermophys 30, 1918–1930 (2009). https://doi.org/10.1007/s10765-009-0688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0688-x

Keywords

Navigation