Skip to main content
Log in

Efficient Detection of 3 THz Radiation from Quantum Cascade Laser Using Silicon CMOS Detectors

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, we report on efficient detection of the radiation emitted by a THz quantum cascade laser (QCL) using an antenna-coupled field effect transistor (TeraFET). In the limiting case when all radiated power would be collected, the investigated TeraFET can show up to 230 V/W responsivity with the noise equivalent power being as low as 85 pW/\(\sqrt {\text {Hz}}\) at 3.1 THz, which is several times lower than that of the typical Golay cell. A combination of the QCL and a set of off-axis parabolic mirrors with 3-inch and 2-inch focal lengths was used to measure the signal-to-noise ratio (SNR) of the TeraFET. The practically achieved SNR was five times lower than that of the Golay cell and two orders of magnitude lower than a bolometer’s. However, TeraFETs are much faster and do not need a signal modulation, thus can be used both in a continuous mode for power monitoring or for investigation of transient processes on a sub-microsecond time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Tonouchi, Nature Photonics 1(2), 97 (2007). doi:10.1038/nphoton.2007.3

  2. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Nature 417(6885), 156 (2002). doi:10.1038/417156a

  3. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, H.C. Liu, Optics Express 20(4), 3866 (2012). doi:10.1364/OE.20.003866

  4. M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D.C. MacFarland, T. Zederbauer, A.M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, Applied Physics Letters 103(17), 171113 (2013). doi:10.1063/1.4826943

  5. D.J. Hayton, J.L. Kloosterman, Y. Ren, T.Y. Kao, J.R. Gao, T.M. Klapwijk, Q. Hu, C.K. Walker, J.L. Reno, in: SPIE Proceedings, ed. by W.S. Holland, J. Zmuidzinas (2014), p. 91531R. doi:10.1117/12.2055790

  6. A. Lee, B. Wil, S. Kumar, Q. Hu, J. Reno, IEEE Photonics Technology Letters 18(13), 1415 (2006). doi:10.1109/LPT.2006.877220

  7. P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Leng Lim, R. Alhathlool, S. Chowdhury, T. Taimre, L.H. Li, D. Indjin, S.J. Wilson, A.D. Rakić, E.H. Linfield, A. Giles Davies, Applied Physics Letters 103(18), 181112 (2013). doi:10.1063/1.4827886

  8. A. Lisauskas, U. Pfeiffer, E. Öjefors, P.H. Bolivar, D. Glaab, H.G. Roskos, Journal of Applied Physics 105(11) (2009). doi:10.1063/1.3140611

  9. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, W. Knap, Optics Express 19(8), 7827 (2011). doi:10.1364/OE.19.007827

  10. M. Dyakonov, M. Shur, IEEE Transactions on Electron Devices 43(3), 380 (1996). doi:10.1109/16.485650

  11. J.Q. Lu, M. Shur, J. Hesler, L. Sun, R. Weikle, IEEE Electron Device Letters 19(10), 373 (1998). doi:10.1109/55.720190

  12. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, S. Rumyantsev, Applied Physics Letters 89(13), 131926 (2006). doi:10.1063/1.2358816

  13. M. Bauer, A. Ramer, S. Boppel, S. Chevtchenko, A. Lisauskas, W. Heinrich, V. Krozer, H.G. Roskos, (IEEE, Paris, 2015), pp. 1–4. doi:10.1109/EuMIC.2015.7345053

  14. S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L. Minkevičius, I. Kašalynas, G. Valušis, M. Mittendorff, S. Winnerl, V. Krozer, H.G. Roskos, IEEE Transactions on Microwave Theory and Techniques 60(12, 1), 3834 (2012). doi:10.1109/TMTT.2012.2221732

  15. L. Romeo, D. Coquillat, M. Pea, D. Ercolani, F. Beltram, L. Sorba, W. Knap, A. Tredicucci, M.S. Vitiello, Nanotechnology 24(21), 214005 (2013). doi:10.1088/0957-4484/24/21/214005

  16. A. Zak, M.A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H.G. Roskos, J. Stake, Nano Letters 14(10), 5834 (2014). doi:10.1021/nl5027309

  17. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valušis, D. Seliuta, Journal of Infrared, Millimeter and Terahertz Waves 30(12), 1319 (2009). doi:10.1007/s10762-009-9564-9

  18. A. Lisauskas, M. Bauer, S. Boppel, M. Mundt, B. Khamaisi, E. Socher, R. Venckevičius, L. Minkevičius, I. Kašalynas, D. Seliuta, G. Valušis, V. Krozer, H.G. Roskos, Journal of Infrared, Millimeter, and Terahertz Waves 35(1), 63 (2014). doi:10.1007/s10762-013-0047-7

  19. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H.M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, IEEE Journal of Solid-State Circuits 47(12), 2999 (2012). doi:10.1109/JSSC.2012.2217851

  20. J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, H.G. Roskos, Journal of Infrared, Millimeter, and Terahertz Waves 36(10), 986 (2015). doi:10.1007/s10762-015-0169-1

  21. F. Teppe, C. Consejo, J. Torres, B. Chenaud, P. Solignac, S. Fathololoumi, Z. Wasilewski, M. Zholudev, N. Dyakonova, D. Coquillat, A. El Fatimy, P. Buzatu, C. Chaubet, W. Knap, Acta Physica Polonica A 120(5), 930 (2011). doi:10.12693/APhysPolA.120.930

  22. M. Ravaro, M. Locatelli, L. Viti, D. Ercolani, L. Consolino, S. Bartalini, L. Sorba, M.S. Vitiello, P. De Natale, Applied Physics Letters 104(8), 083116 (2014). doi:10.1063/1.4867074

  23. M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, H.G. Roskos, Optics Express 22(16), 19235 (2014). doi:10.1364/OE.22.019235

  24. D. Glaab, S. Boppel, A. Lisauskas, U. Pfeiffer, E. Öjefors, H.G. Roskos, Appl. Phys. Lett. 96(4), 042106 (2010). doi:10.1063/1.3292016

  25. S. Regensburger, M. Mittendorff, S. Winnerl, H. Lu, A.C. Gossard, S. Preu, Optics Express 23(16), 20732 (2015). doi:10.1364/OE.23.020732

Download references

Acknowledgements

The Vilnius team acknowledges Research Council of Lithuania for the partial financial support under contract no. TAP LZ-06/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kęstutis Ikamas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikamas, K., Lisauskas, A., Boppel, S. et al. Efficient Detection of 3 THz Radiation from Quantum Cascade Laser Using Silicon CMOS Detectors. J Infrared Milli Terahz Waves 38, 1183–1188 (2017). https://doi.org/10.1007/s10762-017-0407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0407-9

Keywords

Navigation