Skip to main content
Log in

Noise Analysis of Photoconductive Terahertz Detectors

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The noise performance of photoconductive terahertz detectors is analyzed and the tradeoff between low-noise and high-responsivity operation of photoconductive detectors is investigated as a function of device parameters and operational settings. The analysis is conducted on two general photoconductive detector architectures, symmetrically pumped and asymmetrically pumped photoconductive detector architectures. The results indicate that the highest signal-to-noise ratios are offered by the symmetrically pumped and asymmetrically pumped detector architectures for the photoconductive detectors based on short-carrier lifetime and long-carrier lifetime semiconductors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011).

    Article  Google Scholar 

  2. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, Appl. Phys. Lett. 85, 3983–3985 (2004).

    Article  Google Scholar 

  3. E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, Appl. Phys. Lett. 99, 223508 (2011).

    Article  Google Scholar 

  4. P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, Opt. Lett. 32, 2297–2299 (2007).

    Article  Google Scholar 

  5. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296–2301 (2010).

    Article  Google Scholar 

  6. Z. D. Taylor, E. R. Brown, and J. E. Bjarnason, Opt Lett. 31, 1729–1731 (2006).

    Article  Google Scholar 

  7. S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, ACS Nano 6, 2026–2031 (2012).

    Article  Google Scholar 

  8. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett 45, 284–286 (1984).

    Article  Google Scholar 

  9. M. Beck, H. Schafer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, Opt. Express 18, 9251–9257 (2010).

    Article  Google Scholar 

  10. M. Jarrahi, and T. H. Lee, Proc. Int. Microwave Symp 1 . 391–394 (2008).

    Google Scholar 

  11. M. Jarrahi, Photon. Technol. Lett. 21, 2019620 (2009).

    Article  Google Scholar 

  12. T. Hattori, K. Egawa, S. I. Ookuma, and T. Itatani, Jpn. J. Appl. Phys. 45, L422-L424 (2006).

    Article  Google Scholar 

  13. J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett 30, 2490–2492 (2005).

    Article  Google Scholar 

  14. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nature Commun. 4, 1622, doi: 10.1038/ncomms2638 (2013).

    Article  Google Scholar 

  15. C. W. Berry, and M. Jarrahi, New J. Phys. 14, 105029 (2012).

    Article  Google Scholar 

  16. C. W. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, J. Visualized Experiments, 2013 (in press)

  17. P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).

    Article  Google Scholar 

  18. M. van Exter, and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).

    Article  Google Scholar 

  19. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, Appl. Phys. Lett 73, 444–446 (1998).

    Article  Google Scholar 

  20. F. G. Sun, G. A. Wagoner, and X.-C. Zhang, Appl. Phys. Lett.67, 1656–1658 (1995).

    Article  Google Scholar 

  21. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Appl. Phys. Lett 88, 251119 (2006).

    Article  Google Scholar 

  22. M. Tani, K.-S. Lee, and X.-C. Zhang, Appl. Phys. Lett 77, 1396–1398 (2000).

    Article  Google Scholar 

  23. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, Appl. Phys. Lett. 83, 1322–1324 (2003).

    Article  Google Scholar 

  24. M. Suzuki, and M. Tonouchi, Appl. Phys. Lett 86, 163504 (2005).

    Article  Google Scholar 

  25. T. Kataoka, K. Kajikawa, J. Kitagawa, Y. Kadoya, and Y. Takemura, Appl. Phys. Lett 97, 201110 (2010).

    Article  Google Scholar 

  26. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S.-I. Nakashima, and C.-L. Pan, Opt. Express 12, 2954–2959 (2004).

    Article  Google Scholar 

  27. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, Appl. Phys. Lett 86, 254102 (2005).

    Article  Google Scholar 

  28. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider and M. Helm, Appl. Phys. Lett 91, 40–42 (2007).

    Google Scholar 

  29. S. Liu, X. Shou, and A. Nahata, IEEE Trans. Terahertz Sci. Technol 1, 412–415 (2011).

    Article  Google Scholar 

  30. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, Nano Lett. 12, 6255–6259 (2012).

    Article  Google Scholar 

  31. N. Wang, M. R. Hashemi, and M. Jarrahi, Opt. Express (in press)

  32. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).

    Article  Google Scholar 

  33. E. R. Brown, Int. J. High Speed Electronics and Systems 13, 497–545 (2003).

    Article  Google Scholar 

  34. E. R. Brown, F. W. Smith, and K. A. McIntosh, J. Appl. Phys. 73, 1480–1484 (1993).

    Google Scholar 

  35. L. Hou, W. Shi, and S. Chen, IEEE J. Selected Topics in Quantum Electronics 19, 8401305 (2013).

    Article  Google Scholar 

  36. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, IEEE J. Quantum Electron. 41, 717–728 (2005).

    Article  Google Scholar 

  37. C. W. Berry, and M. Jarrahi, J. Infrared, Millimeter & Terahertz Waves 33, 1182–1189 (2012).

    Article  Google Scholar 

  38. P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424–2436 (1996).

    Article  Google Scholar 

  39. Z. Piao, M. Tani, and K. Sakai, Jpn. J. Appl. Phys 39, 96–100 (2000).

    Article  Google Scholar 

  40. K. Ezdi, B. Heinen, C. Jordens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, J. European Opt. Soc. 4, 09001 (2009).

    Article  Google Scholar 

  41. J. Johnson, Phys. Rev 32, 97 (1928).

    Article  Google Scholar 

  42. H. Nyquist, Phys. Rev 32, 110 (1928).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science Foundation CAREER Award (contract # N00014-11-1-0096), the Office of Naval Research (contract # N00014-11-1-0096), the Office of Naval Research Young Investigator Award (contract # N00014-12-1-0947), and the Army Research Office Young Investigator Award (contract # W911NF-12-1-0253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Jarrahi.

APPENDIX A: Derivation of the diffusion photocurrent in asymmetrically pumped photoconductive detectors

APPENDIX A: Derivation of the diffusion photocurrent in asymmetrically pumped photoconductive detectors

The average diffusion photocurrent induced in the absence of the incident terahertz radiation as the result of the asymmetric optical pumping is calculated using the continuity equations. For this derivation, we assume an ohmic contact between the photoconductor contact electrodes and the photo-absorbing semiconductor. The continuity equations determine the dependence of the photo-generated carrier density as a function of distance from the interface between the semiconductor and contact electrodes, x, in steady state conditions:

$$ \frac{ dn}{ dt}=\frac{\eta_e\alpha }{ hv.{d}_i{w}_e}{P}_{opt}-\frac{n}{\tau_n}+{D}_n\frac{d^2n}{d{x}^2}=0 $$
(A-1)
$$ \frac{ dp}{ dt}=\frac{\eta_e\alpha }{ hv.{d}_i{w}_e}{P}_{opt}-\frac{p}{\tau_p}+{D}_p\frac{d^2p}{d{x}^2}=0 $$
(A-2)

where D n (= μ n kT/q) and D P (= μ p kT/q) are electron and hole diffusion constants in the photo-absorbing semiconductor, respectively. Assuming the carrier density at the interface between the semiconductor and contact electrodes approaches its thermal equilibrium value, the steady state photo-generated carrier density as a function of distance from the interface between the semiconductor and contact electrodes is calculated as

$$ n(x)=\frac{\eta_e\alpha {\tau}_n}{ hv.{d}_i{w}_e}{P}_0\left[1-{e}^{-\frac{x}{\sqrt{\tau_n{D}_n\;}}}\right] $$
(A-3)
$$ p(x)=\frac{\eta_e\alpha {\tau}_p}{ hv.{d}_i{w}_e}{P}_0\left[1-{e}^{-\frac{x}{\sqrt{\tau_p{D}_p}}}\right] $$
(A-4)

Therefore, the induced average diffusion photocurrent at the semiconductor contact interface can be calculated accordingly:

$$ {I}_{diff}=\frac{{ w}_e}{\alpha}\left(q{D}_n\frac{ dn}{ dx}\left|x=0-q{D}_p\frac{ dp}{ dx}\right|x=0\right)=\frac{q{\eta}_e}{ hv.{d}_i}{P}_0\left(\sqrt{\tau_n{D}_n}-\sqrt{\tau_p{D}_p}\right) $$
(A-5)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Jarrahi, M. Noise Analysis of Photoconductive Terahertz Detectors. J Infrared Milli Terahz Waves 34, 519–528 (2013). https://doi.org/10.1007/s10762-013-9995-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9995-1

Keywords

Navigation