Skip to main content

Advertisement

Log in

Microscopy versus automated imaging flow cytometry for detecting and identifying rare zooplankton

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many zooplankton surveys underestimate species richness owing to difficulties in detecting rare species. This problem is particularly acute for studies designed to detect non-indigenous species (NIS) when their abundance is low. Our goal was to test the difference in detection efficiency between traditional microscopy and image analysis (i.e., FlowCAM). We hypothesized that detection of rare species should become easier as they become abundant in a sample, if they are morphologically distinct, or if counting effort increased. We spiked different densities of Cladocera into zooplankton samples from Lake Ontario to simulate rarity, and assessed detection rate. Our results indicated that there was a positive relationship between the probability of finding at least one spiked NIS and its abundance, distinctiveness, and counting effort employed. FlowCAM processed more subsamples, though morphologically similar taxa were distinguished more readily with microscopy. The expected probability for detecting one individual spiked into a sample with ~ 8000 individuals (300 counted) was 3.60%, though observed values were considerably lower using both classical microscopy (4.58 × 10−3 to 1.00%) and FlowCAM (0.10 to 3.00%). Our experiments highlight that many plankton ecologists use subsample counts too low to detect rare native species and NIS, resulting in low species richness estimates and false negatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez, E., Á. López-Urrutia, E. Nogueira & S. Fraga, 2011. How to effectively sample the plankton size spectrum? A case study using FlowCAM. Journal of Plankton Research 33: 1119–1133.

    Article  Google Scholar 

  • Arnott, S. E., J. J. Magnuson & N. D. Yan, 1998. Crustacean zooplankton species richness: single-and multiple- year estimates. Canadian Journal of Fisheries and Aquatic Sciences 55: 1573–1582.

    Article  CAS  Google Scholar 

  • Balcer, M. D., N. L. Korda & S. I. Dodson, 1984. Zooplankton of the Great Lakes: A Guide to the Identification and Ecology of the Common Crustacean Species. University of Wisconsin Press, Madison.

    Google Scholar 

  • Camoying, M. G. & A. T. Yñiguez, 2016. FlowCAM optimization: attaining good quality images for higher taxonomic classification resolution of natural phytoplankton samples. Limnology and Oceanography: Methods 14: 305–314.

    Article  Google Scholar 

  • Campbell, M. L., B. Gould & C. L. Hewitt, 2007. Survey evaluations to assess marine bioinvasions. Marine Pollution Bulletin 55: 360–378.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y., D. D. Williams & N. E. Williams, 1998. How important are rare species in aquatic community ecology and bioassessment? Limnology and Oceanography 43: 1403–1409.

    Article  Google Scholar 

  • Chain, F. J. J., E. A. Brown, H. J. MacIsaac & M. E. Cristescu, 2016. Metabarcoding reveals strong spatial structure turnover of zooplankton communities among marine and freshwater ports. Diversity and Distributions 22: 493–504.

    Article  Google Scholar 

  • D’Anjou, R. M., N. L. Balascio & R. S. Bradley, 2014. Locating cryptotephra in lake sediments using fluid imaging technology. Journal of Paleolimnology 52: 257–264.

    Article  Google Scholar 

  • Delaney, D. G. & B. Leung, 2010. An empirical probability model of detecting species at low densities. Ecological Applications 20: 1162–1172.

    Article  PubMed  Google Scholar 

  • Ficetola, G. F., C. Miaud, F. Pompanon & P. Taberlet, 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423–425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fluid Imaging Technologies Inc., 2011. FlowCAM manual version 3.0 [online]. http://www.ihb.cas.cn/fxcszx/fxcs_xgxz/201203/P020120329576952031804.pdf. Accessed 24 March 2016.

  • Frischer, M. E., K. L. Kelly & S. A. Nierzwicki-Bauer, 2012. Accuracy and reliability of Dreissena spp. Larvae detection by cross-polarized light microscopy, imaging flow cytometry, and polymerase chain reaction assays. Lake and Reservoir Management 28: 265–276.

    Article  CAS  Google Scholar 

  • Haney, J. F., Aliberti M. A., Allan E., Allard S., Bauer D. J., and Beagen W. et al., 2013. An-image-based key to the zooplankton of North America. Version 5.0. University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/cfbkey/html/references.htm.

  • Harvey, C. T., S. A. Qureshi & H. J. MacIsaac, 2009. Detection of a colonizing, aquatic, non-indigenous species. Diversity and Distributions 15: 429–437.

    Article  Google Scholar 

  • Hebert, P. D. N., 1977. A revision of the taxonomy of the genus Daphnia (Crustacea: Daphnidae) in south-eastern Australia. Australian Journal of Zoology 25: 371–398.

    Article  Google Scholar 

  • Hoffman, J. C., J. R. Kelly, A. S. Trebitz, G. S. Peterson & C. W. West, 2011. Effort and potential efficiencies for aquatic non-native species early detection. Canadian Journal of Fisheries and Aquatic Sciences 68: 2064–2079.

    Article  Google Scholar 

  • Ide, K., K. Takahashi, A. Kuwata, M. Nakamachi & H. Saito, 2008. A rapid analysis of copepod feeding using FlowCAM. Journal of Plankton Research 30: 275–281.

    Article  Google Scholar 

  • Jerde, C. L., A. R. Mahon, W. L. Chadderton & D. M. Lodge, 2011. “Sight-unseen” detection of rare aquatic species using environmental data. Conservation Letters 4: 150–157.

    Article  Google Scholar 

  • Johnson, W. S. & D. M. Allen, 2005. Zooplankton of the Atlantic and Gulf Coasts, A Guide to Their Identification and Ecology. John Hopkins University Press, Baltimore.

    Google Scholar 

  • Le Bourg, B., V. Cornet-Barthaux & J. Blanchot, 2015. FlowCAM as a tool for studying small (80–1000 µm) metazooplankton communities. Journal of Plankton Research 37: 666–670.

    Article  Google Scholar 

  • Leung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis & G. Lamberti, 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London B: Biological Sciences 269: 2407–2413.

    Article  Google Scholar 

  • Muzinic, C. J., 2000. First record of Daphnia lumholtzi Sars in the Great Lakes. Journal of Great Lakes Research 26: 352–354.

    Article  Google Scholar 

  • Poulton, N. J., 2016. FlowCAM: quantification and classification of phytoplankton by imaging flow cytometry. Imaging Flow Cytometry: Methods and Protocols 1389: 237–247.

    Article  Google Scholar 

  • R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ricciardi, A. & S. K. Atkinson, 2004. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol. Lett. 7: 781–784.

    Article  Google Scholar 

  • Ricciardi, A. & J. B. Rasmussen, 1998. Predicting the identity and impact of future biological invaders: apriority for aquatic resource management. Canadian Journal of Fisheries and Aquatic Sciences 55: 1759–1765.

    Article  Google Scholar 

  • Smirnov, N. N., and B. V. Timms, 1983. A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum, Supplement 1. P1–132

  • Thomsen, P. F., J. Keilgast, L. L. Iverson, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando & E. Willerslev, 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21: 2565–2573.

    Article  CAS  PubMed  Google Scholar 

  • Valentini, A., F. Pompanon & P. Taberlet, 2009. DNA barcoding for ecologists. Trends in Ecology & Evolution 24: 110–117.

    Article  Google Scholar 

  • Ward, H. B., G. C. Whipple & W. T. Edmondson (eds), 1918. Fresh-water Biology, 2nd ed. Wiley, New York.

    Google Scholar 

  • Williamson, M., 1999. Invasions. Ecography 22: 5–12.

    Article  Google Scholar 

  • Witty, L. M., 2004. Practical guide to identifying freshwater crustacean zooplankton, 2nd ed. Cooperative Freshwater Ecology Unit, Greater Sudbury.

    Google Scholar 

  • Wroughton, J. & T. Cole, 2013. Distinguishing between binomial, hypergeometric and negative binomial distributions. Journal of Statistics Education 21: 1–16.

    Article  Google Scholar 

  • Zhan, A., M. Hulak, F. Sylvester, X. Huang, A. A. Adebayo, C. L. Abbott, S. J. Adamowicz, D. D. Heath, M. E. Cristescu & H. J. MacIsaac, 2013. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods in Ecology and Evolution 4(6): 558–565.

    Article  Google Scholar 

  • Zhan, A., W. Xiong, S. He & H. J. MacIsaac, 2014. Influence of artifact removal on rare species recovery in natural complex communities using high throughput sequencing. PLoS ONE 9: 1–7.

    Google Scholar 

Download references

Acknowledgements

We thank Colin van Overdijk for assistance with field work, Emma DeRoy for assisting with spiking zooplankton, Drs. Linda Weiss and Marina Manca for providing spiked species, and Joelle Pecz and Sarah-Jayne Collins for assistance with sample processing. Financial support was provided by an NSERC CREATE (Multiple Stressors and Cumulative Effects in the Great Lakes to Paul Sibley) training grant, Fluid Imaging, and by a Canada Research Chair and NSERC Discovery Grant to HJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keara Stanislawczyk.

Additional information

Handling editor: Andrew Dzialowski

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanislawczyk, K., Johansson, M.L. & MacIsaac, H.J. Microscopy versus automated imaging flow cytometry for detecting and identifying rare zooplankton. Hydrobiologia 807, 53–65 (2018). https://doi.org/10.1007/s10750-017-3382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3382-1

Keywords

Navigation