Skip to main content

Advertisement

Log in

Invertebrate responses to flow: trait-velocity relationships during low and moderate flows

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The mechanisms underlying responses of stream invertebrates to low flows are poorly understood. To clarify the strategies used to tolerate and survive low flow periods, we tested associations between patch-scale invertebrate densities and velocity within riffle habitats during moderate and low flows. We focused on filter-feeding and respiration traits because they have a mechanistic link to invertebrate low flow responses. 228 samples were collected from 3 riffles at 2 low and 2 moderate flow periods. Maximum densities of filter-feeders were positively associated with the highest velocities during low flows, but not moderate flows, partly consistent with our prediction that they would be structured along velocity gradients to meet nutritional requirements. Gill-respiring invertebrate densities were inversely related to velocity during both flows, probably attributable to organic matter accumulated in low velocity areas. O2 requirements during low flows did not constrain tegument-respirers to higher velocity patches, inconsistent with perceived views of their response to low flows. We found high velocity areas could act as refuges for some invertebrates during low flows, while low velocity patches, which are vulnerable to rapid flow recession, are important habitats for other invertebrates. Environmental flow management should focus on strategies that preserve these habitats during low flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.

    Article  Google Scholar 

  • Atkinson, C. L., S. W. Golladay, S. P. Opsahl & A. P. Covich, 2009. Stream discharge and floodplain connections affect seston quality and stable isotopic signatures in a coastal plain stream. Journal of the North American Benthological Society 28: 360–370.

    Article  Google Scholar 

  • Baumer, C., R. Pirow & R. J. Paul, 2000. Respiratory adaptations to running-water microhabitats in mayfly larvae Epeorus sylvicola and Ecdyonurus torrentis. Ephemeroptera. Physiological & Biochemical Zoology 73: 77.

    Article  CAS  Google Scholar 

  • Bonada, N., S. Dolédec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Article  Google Scholar 

  • Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.

    Article  Google Scholar 

  • Boulton, A. J. & P. S. Lake, 1990. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshwater Biology 24: 123–141.

    Article  CAS  Google Scholar 

  • Boulton, A. J. & P. S. Lake, 2008. Effects of drought on stream insects and its ecological consequences. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: challenges to Populations. CAB International, Wallingford: 81–102.

    Chapter  Google Scholar 

  • Brodersen, K. P., O. Pedersen, I. R. Walker & M. T. Jensen, 2008. Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshwater Biology 53: 593–602.

    Article  Google Scholar 

  • Brooks, S., 1994. An efficient and quantitative aquatic benthos sampler for use in diverse habitats with variable flow regimes. Hydrobiologia 281: 123–128.

    Article  Google Scholar 

  • Brooks, A. J., B. C. Chessman & T. Haeusler, 2011. Macroinvertebrate traits distinguish unregulated rivers subject to water abstraction. Journal of the North American Benthological Society 30: 419–435.

    Article  Google Scholar 

  • Cade, B. S. & B. R. Noon, 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1: 412–420.

    Article  Google Scholar 

  • Cade, B. S., J. W. Terrell & R. L. Schroeder, 1999. Estimating effects of limiting factors with regression quantiles. Ecology 80: 311–323.

    Article  Google Scholar 

  • Chessman, B. C., 2015. Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshwater Biology 60: 50–63.

    Article  Google Scholar 

  • Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.

    Article  Google Scholar 

  • Chiew, F. H. S., J. Teng, J. Vaze, D. A. Post, J. M. Perraud, D. G. C. Kirono & N. R. Viney, 2009. Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method. Water Resources Research 45: W10414.

    Article  Google Scholar 

  • Collier, K., 1994. Influence of nymphal size, sex and morphotype on microdistribution of Deleatidium (Ephemeroptera: Leptophlebiidae) in a New Zealand river. Freshwater Biology 31: 35–42.

    Article  Google Scholar 

  • Connolly, N. M., M. R. Crossland & R. G. Pearson, 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society 23: 251–270.

    Article  Google Scholar 

  • Cummins, K. W., R. C. Petersen, F. O. Howard, J. C. Wuycheck & V. I. Holt, 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.

    Article  Google Scholar 

  • Death, R. G., 2008. The effect of floods on aquatic invertebrate communities. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: challenges to Populations. CAB International, Wallingford: 103–121.

    Chapter  Google Scholar 

  • Dewson, Z. S., A. B. W. James & R. G. Death, 2007a. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.

    Article  Google Scholar 

  • Dewson, Z. S., A. B. W. James & R. G. Death, 2007b. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshwater Biology 52: 357–369.

    Article  CAS  Google Scholar 

  • Dodds, G. S. & F. L. Hisaw, 1924. Ecological studies of aquatic insects: size of respiratory organs in relation to environmental conditions. Ecology 5: 262–271.

    Article  Google Scholar 

  • Downes, B. J., J. Lancaster, R. Hale, A. Glaister & W. D. Bovill, 2011. Plastic and unpredictable responses of stream invertebrates to leaf pack patches across sandy-bottomed streams. Marine and Freshwater Research 62: 394–403.

    Article  CAS  Google Scholar 

  • Drake, J. A., 1984. Species aggregation: the influence of detritus in a benthic invertebrate community. Hydrobiologia 112: 109–115.

    Article  Google Scholar 

  • Eriksen, C. H., 1963. Respiratory regulation in Ephemera simulans (Walker) and Hexagenia limbata (Serville) (Ephemeroptera). Journal of Experimental Biology 40: 455–468.

    CAS  Google Scholar 

  • Fonseca, D. M. & D. D. Hart, 2001. Colonization history masks habitat preferences in local distributions of stream insects. Ecology 82: 2897–2910.

    Article  Google Scholar 

  • Fuller, R. L., C. Griego, J. D. Muehlbauer, J. Dennison & M. W. Doyle, 2010. Response of stream macroinvertebrates in flow refugia and high-scour areas to a series of floods: a reciprocal replacement study. Journal of the North American Benthological Society 29: 750–760.

    Article  Google Scholar 

  • Gallepp, G. W., 1977. Responses of caddisfly larvae (Brachycentrus spp.) to temperature, food availability and current velocity. American Midland Naturalist 98: 59–84.

    Article  Google Scholar 

  • Gaufin, A. R., R. Clubb & R. Newell, 1974. Studies on the tolerance of aquatic insects to low oxygen concentrations. The Great Basin Naturalist 34: 45–59.

    Google Scholar 

  • Georgian, T. & J. H. Thorp, 1992. Effects of microhabitat selection on feeding rates of net-spinning caddisfly larvae. Ecology 73: 229–240.

    Article  Google Scholar 

  • Golubkov, S. M. & T. M. Tiunova, 1989. Dependence of the respiration rate upon oxygen concentration in water for some rheophilous mayfly larvae (Ephemeroptera). Aquatic Insects 11: 147–151.

    Article  Google Scholar 

  • Golubkov, S. M., T. M. Tiunova & S. L. Kocharina, 1992. Dependence of the respiration rate of aquatic insects upon the oxygen concentration in running and still water. Aquatic Insects 14: 137–144.

    Article  Google Scholar 

  • Gooderham, J. & E. Tsyrlin, 2002. The Waterbug Book. CSIRO, Collingwood.

    Google Scholar 

  • Hansen, R. A., D. D. Hart & R. A. Merz, 1991. Flow mediates predator-prey interactions between triclad flatworms and larval black flies. Oikos 60: 187–196.

    Article  Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systemmatics 30: 363–395.

    Article  Google Scholar 

  • Hart, D. D. & R. A. Merz, 1998. Predator-prey interactions in a benthic stream community: a field test of flow-mediated refuges. Oecologia 114: 263–273.

    Article  Google Scholar 

  • Horrigan, N. & D. J. Baird, 2008. Trait patterns of aquatic insects across gradients of flow-related factors: a multivariate analysis of Canadian national data. Canadian Journal of Fisheries and Aquatic Sciences 65: 670–680.

    Article  Google Scholar 

  • James, A. B. W., Z. S. Dewson & R. G. Death, 2009. The influence of flow reduction on macroinvertebrate drift density and distance in three New Zealand streams. Journal of the North American Benthological Society 28: 220–232.

    Article  Google Scholar 

  • Kazmierczak, R. F., J. R. Webster & E. F. Benfield, 1987. Characteristics of seston in a regulated Appalachian Mountain river, U.S.A. Regulated Rivers: Research & Management 1: 287–300.

    Article  Google Scholar 

  • Koenker, R., 2015. Quantreg: quantile Regression., http://CRAN.R-project.org/package=quantreg.

  • Lake, S., N. Bond & P. Reich, 2006. Floods down rivers: from damaging to replenishing forces. Advances in Ecological Research 39: 41–62.

    Article  Google Scholar 

  • Lancaster, J. & L. R. Belyea, 2006. Defining the limits to local density: alternative views of abundance–environment relationships. Freshwater Biology 51: 783–796.

    Article  Google Scholar 

  • Lancaster, J. & B. J. Downes, 2010. Linking the hydraulic world of individual organisms to ecological processes: putting ecology into ecohydraulics. River Research and Applications 26: 385–403.

    Article  Google Scholar 

  • Lancaster, J. & B. J. Downes, 2013. Gas Exchange. In Lancaster, J. & B. J. Downes (eds), Aquatic Entomology. Oxford University Press, Oxford: 37–53.

    Chapter  Google Scholar 

  • Lancaster, J. & A. G. Hildrew, 1993. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12: 385–393.

    Article  Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94–100.

    Article  Google Scholar 

  • McKay, S. F. & A. J. King, 2006. Potential ecological effects of water extraction in small, unregulated streams. River Research and Applications 22: 1023–1037.

    Article  Google Scholar 

  • Miller, S. W., D. Wooster & J. Li, 2007. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology 52: 2494–2510.

    Article  Google Scholar 

  • Murphy, B. F. & B. Timbal, 2008. A review of recent climate variability and climate change in southeastern Australia. International Journal of Climatology 28: 859–879.

    Article  Google Scholar 

  • Murphy, J. F., P. S. Giller & M. A. Horan, 1998. Spatial scale and the aggregation of stream macroinvertebrates associated with leaf packs. Freshwater Biology 39: 325–337.

    Article  Google Scholar 

  • Nebeker, A. V., 1972. Effect of low oxygen concentration on survival and emergence of aquatic insects. Transactions of the American Fisheries Society 101: 675–679.

    Article  Google Scholar 

  • Palmer, M. A., C. M. Swan, K. Nelson, P. Silver & R. Alvestad, 2000. Streambed landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landscape Ecology 15: 563–576.

    Article  Google Scholar 

  • Peckarsky, B. L., S. C. Horn & B. Statzner, 1990. Stonefly predation along a hydraulic gradient: a field test of the harsh—benign hypothesis. Freshwater Biology 24: 181–191.

    Article  Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.

    Article  Google Scholar 

  • Philipson, G. N. & B. H. S. Moorhouse, 1974. Observations on ventilatory and net-spinning activities of larvae of the genus Hydropsyche Pictet (Trichoptera, Hydropsychidae) under experimental conditions. Freshwater Biology 4: 525–533.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730–755.

    Article  Google Scholar 

  • R Core Team, 2015. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, http://www.R-project.org/.

  • Robson, B. J., E. T. Chester & C. M. Austin, 2011. Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Marine and Freshwater Research 62: 801–810.

    Article  CAS  Google Scholar 

  • Rolls, R. J., C. Leigh & F. Sheldon, 2012. Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Science 31: 1163–1186.

    Article  Google Scholar 

  • Schäfer, R. B., B. J. Kefford, L. Metzeling, M. Liess, S. Burgert, R. Marchant, V. Pettigrove, P. Goonan & D. Nugegoda, 2011. A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Science of The Total Environment 409: 2055–2063.

    Article  PubMed  Google Scholar 

  • Sharpe, A. K. & B. J. Downes, 2006. The effects of potential larval supply, settlement and post-settlement processes on the distribution of two species of filter-feeding caddisflies. Freshwater Biology 51: 717–729.

    Article  Google Scholar 

  • Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.

    Article  Google Scholar 

  • Stewart, B. A., P. G. Close, P. A. Cook & P. M. Davies, 2013. Upper thermal tolerances of key taxonomic groups of stream invertebrates. Hydrobiologia 718: 131–140.

    Article  CAS  Google Scholar 

  • Suren, A. M. & I. G. Jowett, 2006. Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology 51: 2207–2227.

    Article  Google Scholar 

  • Tachet, H., J. P. Pierrot, C. Roux & M. Bournaud, 1992. Net-building behaviour of six Hydropsyche species (Trichoptera) in relation to current velocity and distribution along the Rhône River. Journal of the North American Benthological Society 11: 350–365.

    Article  Google Scholar 

  • Thomson, J. D., G. Weiblen, B. A. Thomson, S. Alfaro & P. Legendre, 1996. Untangling multiple factors in spatial distributions: lilies, gophers, and rocks. Ecology 77: 1698–1715.

    Article  Google Scholar 

  • Verberk, W. C. E. P. & D. T. Bilton, 2013. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biology Letters 9: 20130473.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verberk, W. C. E. P. & P. Calosi, 2012. Oxygen limits heat tolerance and drives heat hardening in the aquatic nymphs of the gill breathing damselfly Calopteryx virgo (Linnaeus, 1758). Journal of Thermal Biology 37: 224–229.

    Article  Google Scholar 

  • Verberk, W. C. E. P., D. T. Bilton, P. Calosi & J. I. Spicer, 2011. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92: 1565–1572.

    Article  PubMed  Google Scholar 

  • Verberk, W. C. E. P., C. G. E. van Noordwijk & A. G. Hildrew, 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32: 531–547.

    Article  Google Scholar 

  • Walters, A. W., 2011. Resistance of aquatic insects to a low-flow disturbance: exploring a trait-based approach. Journal of the North American Benthological Society 30: 346–356.

    Article  Google Scholar 

  • Walters, A. W. & D. M. Post, 2011. How low can you go? Impacts of a low-flow disturbance on aquatic insect communities. Ecological Applications 21: 163–174.

    Article  PubMed  Google Scholar 

  • Wetmore, S. H., R. J. Mackay & R. W. Newbury, 1990. Characterization of the hydraulic habitat of Brachycentrus occidentalis, a filter-feeding caddisfly. Journal of the North American Benthological Society 9: 157–169.

    Article  Google Scholar 

  • Wiley, M. J. & S. L. Kohler, 1980. Positioning changes of mayfly nymphs due to behavioral regulation of oxygen consumption. Canadian Journal of Zoology 58: 618–622.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Jill Lancaster and Ben Wolfenden for providing helpful comments and suggestions for an earlier version of this manuscript. We are also grateful for the assistance of Ivars Reinfelds, Simon Williams, Matthew Russell, Stella Bennett, Tim Cooney, Kevin Brown and John Medway in the field and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Brooks.

Additional information

Handling editor: Nicholas Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, A.J., Haeusler, T. Invertebrate responses to flow: trait-velocity relationships during low and moderate flows. Hydrobiologia 773, 23–34 (2016). https://doi.org/10.1007/s10750-016-2676-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2676-z

Keywords

Navigation