Skip to main content

Advertisement

Log in

Effects of carbaryl on species interactions of the foothill yellow legged frog (Rana boylii) and the Pacific treefrog (Pseudacris regilla)

  • INVASIVE SPECIES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Amphibian species worldwide are being confronted with novel anthropogenic stressors such as contaminants and invasive species. While much work has been done to examine these factors individually, less is known about how these stressors might interact. No studies to this point have examined the potentially synergistic impacts between these two stressors on a threatened amphibian species. We present the results from three separate laboratory studies focusing on two species of frogs, the Pacific tree frog (Pseudacris regilla) and a federal species of concern, the foothill yellow legged frog (Rana boylii). These experiments examine the toxicity of an insecticide, carbaryl, on each species, on their competitive interactions, and on their interaction with a non-native crayfish predator (Pacifastacus leniusculus). R. boylii were more susceptible to pesticide exposure than P. regilla and exposure reduced their ability to compete. This differential effect of the pesticide resulted in a remarkable increase in mortality (50%) for R. boylii with an invasive crayfish predator present while P. regilla exhibited no change. These results add to concerns over the utility of single species toxicity tests in determining safe levels for environmental exposure and advocate for the use of multiple species tests that focus on key species interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bridges, C. M., 1997. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environmental Toxicology and Chemistry 16: 1935–1939.

    Article  CAS  Google Scholar 

  • Bridges, C. M., 1999a. Effects of a pesticide on tadpole activity and predator avoidance behavior. Journal of Herpetology 33: 303–306.

    Article  Google Scholar 

  • Bridges, C. M., 1999b. Predator-prey interactions between two amphibian species: effects of insecticide exposure. Aquatic Ecology 33: 205–211.

    Article  CAS  Google Scholar 

  • Bridges, C. M. & R. D. Semlitsch, 2000. Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conservation Biology 14: 1490–1499.

    Article  Google Scholar 

  • Boone, M. D. & R. D. Semlitsch, 2001. Interactions of an insecticide with larval density and predation in experimental amphibian communities. Conservation Biology 15: 228–238.

    Article  Google Scholar 

  • Boone, M. D., R. D. Semlitsch, J. F. Fairchild & B. B. Rothermel, 2004. Effects of an insecticide on amphibians in large-scale experimental ponds. Ecological Applications 14: 685–691.

    Article  Google Scholar 

  • Bulen, B. J. & C. A. Distel, 2011. Carbaryl concentration gradients in realistic environments and their influence on our understanding of the tadpole food web. Archives of Environmental Contamination and Toxicology 60: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. R., T. Miiller & J. L. Kerby, 2013. The interactive effect of an emerging infectious disease and an emerging contaminant on Woodhouse’s toad (Anaxyrus woodhousii) tadpoles. Environmental Toxicology and Chemistry 32: 2003–2008.

    Article  CAS  PubMed  Google Scholar 

  • Caro, T., J. Eadie & A. Sih, 2005. Use of substitute species in conservation biology. Conservation Biology 19: 1821–1826.

    Article  Google Scholar 

  • Collins, J. P. & A. Storfer, 2004. Global amphibian declines: Sorting the hypotheses. Diversity and Distributions 9: 89–98.

    Article  Google Scholar 

  • Datta, S., L. Hansen, L. McConnell, J. Baker, J. Lenoir & J. N. Seiber, 1998. Pesticides and PCB contaminants in fish and tadpoles from the Kaweah River Basin, California. Environmental Toxicology and Chemistry 60: 829–836.

    CAS  Google Scholar 

  • Davidson, C., 2004. Declining downwind: Amphibian population declines in California and historical pesticide use. Ecological Applications 14: 1892–1902.

    Article  Google Scholar 

  • Davidson, C., H. B. Shaffer & M. R. Jennings, 2002. Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines. Conservation Biology 16: 1588–1601.

    Article  Google Scholar 

  • Distel, C. A. & M. D. Boone, 2011. Insecticide has asymmetric effects on two tadpole species despite priority effects. Ecotoxicology 20: 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Dodson, S. I., T. Hanazato & P. R. Gorski, 1995. Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environmental Toxicology and Chemistry 14: 43–50.

    Article  CAS  Google Scholar 

  • Gamradt, S. & L. B. Kats, 1995. Effect of introduced crayfish and mosquitofish on California newts. Conservation Biology 10: 1155–1162.

    Article  Google Scholar 

  • Gherardi, F., 2006. Crayfish invading Europe: the case study of Procambarus clarkii. Marine and Freshwater Behaviour and Physiology 39: 175–191.

    Article  Google Scholar 

  • Gosner, K., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetelogica 16: 183–190.

    Google Scholar 

  • Hopkins, W. A., 2007. Amphibians as models for studying environmental change. ILAR Journal 48: 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Kats, L. & R. P. Ferrer, 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity and Distributions 9: 99–110.

    Article  Google Scholar 

  • Kerby, J. L. & L. B. Kats, 1998. Modified interactions between salamander life stages caused by wildfire-induced sedimentation. Ecology 79: 740–745.

    Article  Google Scholar 

  • Kerby, J. L. & A. Storfer, 2009. Combined effects of atrazine and chlorpyrifos on susceptibility of the Tiger Salamander to Ambystoma tigrinum virus. Ecohealth 6: 91–98.

    Article  PubMed  Google Scholar 

  • Kerby, J., S. Riley, P. Wilson & L. B. Kats, 2005. Barriers and flow as limiting factors in the spread of an invasive crayfish (Procambarus clarkii) in southern California streams. Biological Conservation 126: 402–409.

    Article  Google Scholar 

  • Kerby, J. L., K. Richards-Hrdlicka, A. Storfer & D. Skelly, 2010. An examination of amphibian sensitivity to environmental contaminants: Are amphibians poor canaries? Ecology Letters 13: 60–67.

    Article  PubMed  Google Scholar 

  • Kerby, J. L., A. Wehrmann & A. Sih, 2012. Impacts of the insecticide diazinon on the behavior of predatory fish and amphibian prey. Journal of Herpetology 46: 171–176.

    Article  Google Scholar 

  • Kupferberg, S., 1997. Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78: 1736–1751.

    Article  Google Scholar 

  • Little, E. E., R. D. Archeski, B. A. Flerov & V. I. Kozlovskaya, 1990. Behavioral indicators of sublethal toxicity in rainbow trout. Archives of Environmental Contamination and Toxicology 19: 380–385.

    Article  CAS  PubMed  Google Scholar 

  • Luttbeg, B. & J. L. Kerby, 2005. Are scared prey as good as dead? Trends in Ecology and Evolution 20: 416–418.

    Article  PubMed  Google Scholar 

  • Nakata, K., K. Tsutsumi, T. Kawai & S. Goshima, 2005. Coexistence of two North American invasive crayfish species, Pacifastacus leniusculus (Dana, 1852) and Procambarus clarkii (Girard, 1852) in Japan. Crustaceana 78: 1389–1394.

    Article  Google Scholar 

  • Norris, L. A., H. W. Lorz, and S. Z. Gregory. 1983. Influence of forest and range land management on anadramous fish habitat in western North America: forest chemicals. USDA Forest Service General Technical Report PNW-149.

  • Pintor, L. M., A. Sih & J. L. Kerby, 2009. Behavioral correlations provide a mechanism for explaining high invader densities and increased impacts on native prey. Ecology 90: 581–587.

    Article  PubMed  Google Scholar 

  • Preisser, E. L., D. I. Bolnick & M. F. Benard, 2005. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86: 501–509.

    Article  Google Scholar 

  • Relyea, R. A., 2003. Predator cues and pesticides: a double dose of danger for amphibians. Ecological Applications 13: 1515–1521.

    Article  Google Scholar 

  • Relyea, R. A., 2004. Growth and survival of five amphibian species exposed to combinations of pesticides. Environmental Toxicology and Chemistry 23: 1737–1742.

    Article  CAS  PubMed  Google Scholar 

  • Relyea, R. A. & J. T. Hoverman, 2006. Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecology Letters 9: 1157–1171.

    Article  PubMed  Google Scholar 

  • Relyea, R. A. & N. Mills, 2001. Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). Proceedings of the National Academy of Sciences 98: 2491–2496.

    Article  CAS  Google Scholar 

  • Rohr, J., J. Kerby & A. Sih, 2006. Community ecology as a framework for predicting contaminant effects. Trends in Ecology and Evolution 21: 607–613.

    Article  Google Scholar 

  • Schmitz, O. J., A. P. Beckerman & K. M. O’Brien, 1997. Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78: 1388–1399.

    Article  Google Scholar 

  • Sih, A., A. M. Bell & J. L. Kerby, 2004. Two stressors are far deadlier than one. Trends in Ecology and Evolution 19: 274–276.

    Article  PubMed  Google Scholar 

  • Sparling, D. W., G. M. Fellers & L. L. McConnell, 2001. Pesticides and amphibian population declines in California, USA. Environmental Toxicology and Chemistry 7: 1591–1595.

    Article  Google Scholar 

  • Sparling, D. W. & G. M. Fellers, 2009. Toxicity of two insecticides to california, USA, anurans and its relevance to declining amphibian populations. Environmental Toxicology and Chemistry 28: 1696–1703.

    Article  CAS  PubMed  Google Scholar 

  • Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman & R. W. Waller, 2004. Status and trends of amphibian declines and extinctions worldwide. Science 5702: 1783–1786.

    Article  Google Scholar 

  • Weltje, L., P. Simpson, M. Gross, M. Crane & J. R. Wheeler, 2013. Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data. Environmental Toxicology and Chemistry 32: 984–994.

    Article  CAS  PubMed  Google Scholar 

  • Werner, E. E., 1991. Nonlethal effects of a predator on competitive interactions between two anuran larvae. Ecology 72: 1709–1720.

    Article  Google Scholar 

  • Werner, E. E. & B. R. Anholt, 1997. Predator-induced behavioral indirect effects: consequences to competitive interactions in anuran larvae. Ecology 77: 157–169.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Environmental Protection Agency. We thank B. Shaffer and M. Johnson for input on previous versions of this manuscript. We also thank A. Lind and S. Kupferberg for assistance with R. boylii. K. Bryant was instrumental in conducting the work. This work was conducted under a permit from the California Department of Fish and Game.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Kerby.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerby, J.L., Sih, A. Effects of carbaryl on species interactions of the foothill yellow legged frog (Rana boylii) and the Pacific treefrog (Pseudacris regilla) . Hydrobiologia 746, 255–269 (2015). https://doi.org/10.1007/s10750-014-2137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2137-5

Keywords

Navigation