Skip to main content

Advertisement

Log in

The influence of two differently sized dams on mussel assemblages and growth

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dams have been shown to impact freshwater mussels. We examined how mussels respond to differently sized dams (18 vs. 4 m) on the St. Croix River and its tributary, the Sunrise River. We hypothesized that: mussel density and growth rate would be greater downstream of the smaller dam due to the relatively greater food subsidies and temperature effects of the reservoir above it; and the effects of the small dam would moderate downstream as the localized impacts of the dam were reduced. We quantitatively sampled mussels upstream and downstream of the dams. For a common species, Actinonaias ligamentina, we ascertained growth rates by measuring successive growth rings. The highest mussel richness and diversity were upstream and downstream of the large dam. Higher mussel density was found immediately below the small dam but declined downstream. A. ligamentina downstream of the small dam grew faster and were larger than individuals in other reaches. Food availability and temperature appeared to influence mussel density and growth rate for A. ligamentina downstream of the small dam. This study provides information that may help managers decide whether to remove small dams or to maintain them because of the unique mussel habitats below these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anthony, J. L., D. H. Kesler, W. L. Downing & J. A. Downing, 2001. Length-specific growth rates in freshwater mussels (Bivalvia: Unionidae): extreme longevity or generalized growth cessation? Freshwater Biology 46: 1349–1359.

    Article  Google Scholar 

  • Arthington, A. H., R. J. Naiman, M. E. McClain & C. Nilsson, 2010. Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology 55: 1–16.

    Article  Google Scholar 

  • Benstead, J. P., A. D. Rosemond, W. F. Cross, J. B. Wallace, S. L. Eggert, K. Suberkropp, V. Gulis, J. L. Greenwood & C. J. Tant, 2009. Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem. Ecology 90: 2556–2566.

    Article  PubMed  Google Scholar 

  • Daniel, W. M. & K. M. Brown, 2013. Multifactorial model of habitat, host fish, and landscape effects on Louisiana freshwater mussels. Freshwater Science 32: 193–203.

    Article  Google Scholar 

  • Davis, M. & S. Miller. 1996. A mussel survey of the Sunrise River, Minnesota 1996. Division of Ecological Services, Minnesota Department of Natural Resources [available on Internet at http://files.dnr.state.mn.us/eco/nongame/projects/consgrant_reports/1987/1987_davis.pdf].

  • De Graaf, G. & M. Prein, 2005. Fitting growth with the von Bertalanffy growth function: a comparison of three approaches of multivariate analysis of fish growth in aquaculture experiments. Aquaculture Research 36: 100–109.

    Article  Google Scholar 

  • Doyle, M. W. & F. D. Shields, 2012. Compensatory mitigation for streams under the clean water act: reassessing science and redirecting policy. Journal of the American Water Resources Association 48: 494–509.

    Article  Google Scholar 

  • Doyle, M. W., E. H. Stanley, J. M. Harbor & G. S. Grant, 2003. Dam removal in the United States: emerging needs for science and policy. EOS Transactions, American Geophysical Union 84: 29–36.

    Article  Google Scholar 

  • Fago, D. & J. Hatch, 1993. Aquatic resources of the St. Croix River Basin. U S Fish and Wildlife Service Biological Report 19: 23–56.

    Google Scholar 

  • Galbraith, H. S. & C. C. Vaughn, 2011. Effects of reservoir management on abundance, condition, parasitism and reproductive traits of downstream mussels. River Research and Applications 27: 193–201.

    Article  Google Scholar 

  • Gangloff, M. M., E. E. Hartfield, D. C. Werneke & J. W. Feminella, 2011. Associations between small dams and mollusk assemblages in Alabama streams. Journal of the North American Benthological Society 30: 1107–1116.

    Article  Google Scholar 

  • Gregory, S., H. Li & J. Li, 2002. The conceptual basis for ecological responses to dam removal. Bioscience 52: 713–723.

    Article  Google Scholar 

  • Gutierrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  • Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Haag, W. R. & A. M. Commens-Carson, 2008. Testing the assumption of annual shell ring deposition in freshwater mussels. Canadian Journal of Fisheries and Aquatic Sciences 65: 493–508.

    Article  Google Scholar 

  • Haag, W. R. & A. L. Rypel, 2011. Growth and longevity in freshwater mussels: evolutionary and conservation implications. Biological Reviews 86: 225–247.

    Article  PubMed  Google Scholar 

  • Heise, R. J., W. C. Cope, T. J. Kwak & C. B. Eads, 2013. Short-term effects of small dam removal on a freshwater mussel assemblage. Walkerana 16: 41–52.

    Google Scholar 

  • Helms, B. S., D. C. Werneke, M. M. Gangloff, E. E. Hartfiled & J. W. Feminella, 2011. The influence of low-head dams on fish assemblages in streams across Alabama. Journal of the North American Benthological Society 30: 1095–1106.

    Article  Google Scholar 

  • Hornbach, D. J., 2001. Macrohabitat factors influencing the distribution and abundance of najads in the St. Croix River, MN and WI, USA. In Bauer, G. & W. Wachtler (eds), Ecology and Evolutionary Biology of the Freshwater Mussels Unionoidea. Ecological Studies, Vol. 145. Springer, Berlin: 213–230.

    Chapter  Google Scholar 

  • Hornbach, D. J. & T. Deneka, 1996. A comparison of a qualitative and quantitative collection method for examining freshwater mussel assemblages. Journal of the North American Benthological Society 15: 587–596.

    Article  Google Scholar 

  • Ignatius, A. & J. A. Stallins, 2011. Assessing Spatial Hydrological Data Integration to Characterize Geographic Trends in Small Reservoirs in the Apalachicola–Chattahoochee–Flint River Basin. Southeastern Geographer 51: 371–393.

    Article  Google Scholar 

  • Layzer, J. B., M. E. Gordon & R. M. Anderson, 1993. Mussels: the forgotten fauna of regulated rivers—a case study of the Caney Fork River. Regulated Rivers: Research and Management 8: 63–71.

    Article  Google Scholar 

  • Lessard, J. L. & D. B. Hayes, 2003. Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River Research and Applications 19: 721–732.

    Article  Google Scholar 

  • Master, L. L., B. A. Stein, L. S. Kutner & G. A. Hammerson, 2000. Vanishing assets: conservation status of U.S. species. In Stein, B. A., L. S. Kutner & J. S. Adams (eds), Precious Heritage: The Status of Biodiversity in the United States. Oxford University Press, Oxford: 93–118.

    Google Scholar 

  • McMurray, S. E., G. A. Schuster & B. A. Ramey, 1999. Recruitment in a freshwater unionid (Mollusca: Bivalvia) community downstream of Cave Run Lake in the Licking River, Kentucky. American Malacological Bulletin 15: 57–63.

    Google Scholar 

  • Newton, T. J., S. J. Zigler, J. T. Rogala, B. R. Gray & M. Davis, 2011. Population assessment and potential functional roles of native mussels in the Upper Mississippi River. Aquatic Conservation: Marine and Freshwater Ecosystems 21: 122–131.

    Article  Google Scholar 

  • Niemela, S., D. Christopherson, J. Genet, J. Chirhart & M. Feist, 2005. A Comprehensive Assessment of Rivers and Streams in the St. Croix River Basin Using a Random Site-Selection Process. Minnesota Pollution Control Agency Environmental Bulletin 6: 1–12.

    Google Scholar 

  • Poff, N. L. & D. D. Hart, 2002. How dams vary and why it matters for the emerging science of dam removal. Bioscience 52: 659–668.

    Article  Google Scholar 

  • Sansom, B. J., D. J. Hornbach, M. C. Hove & J. S. Kilgore, 2013. Effects of flow restoration on freshwater mussel growth in a Wild and Scenic North American River. Aquatic Biosystems 9: 6.

    Article  PubMed  Google Scholar 

  • Sethi, S. A., A. R. Selle, M. W. Doyle, E. H. Stanley & H. E. Kitchel, 2004. Response of unionid mussels to dam removal in Koshkonong Creek, Wisconsin (USA). Hydrobiologia 525: 157–165.

    Article  Google Scholar 

  • Sietman, B. E., 2003. Field Guide to the Freshwater Mussels of Minnesota. Minnesota Department of Natural Resources, St. Paul: 144 pp.

  • Singer, E. E. & M. M. Gangloff, 2011. Effects of a small dam on freshwater mussel growth in an Alabama (U.S.A.) stream. Freshwater Biology 56: 1904–1915.

    Article  Google Scholar 

  • Snyder, R. L, 2005. Degree Days [available on Internet at http://biomet.ucdavis.edu/DegreeDays/DegDay.htm].

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024.

    Article  CAS  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2008. A trait-based approach to species’ roles in stream ecosystems: climate change, community structure and material cycling. Oecologia 158: 307–317.

    Article  PubMed  Google Scholar 

  • Stanley, E. H. & M. W. Doyle, 2002. A geomorphic perspective on nutrient retention following dam removal. Bioscience 52: 693–701.

    Article  Google Scholar 

  • Strayer, D. L., 2008. Freshwater mussel ecology: a multifactor approach to distribution and abundance. University of California Press, Ewing.

    Google Scholar 

  • Strayer, D. L. & K. J. Jirka, 1997. The Pearly Mussels of New York State. The New York State Education Department, Albany.

    Google Scholar 

  • Taylor, B. R. & J. C. Roff, 1982. Transport and particle size distribution of suspended ad benthic organic matter in three headwater streams. Hydrobiologia 93: 281–288.

    Article  Google Scholar 

  • Turgeon, D. D., J. F. Quinn Jr., A. E. Bogan, E. V. Coan, F. G. Hochberg, W. G. Lyons, P. M. Mikkelsen, R. J. Neves, C. F. E. Roper, G. Rosenberg, B. Roth, A. Scheltema, F. G. Thompson, M. Vecchione & J. D. Williams, 1998. Common and Scientific Names of Aquatic Invertebrates from the United States and Canada: Mollusks, 2nd Edition. American Fisheries Society, Special Publication 26, Bethesda, MD.

  • U.S. Fish and Wildlife Service, 2012. Endangered and threatened wildlife and plants; determination of endangered status for the sheepnose and spectaclecase mussels throughout their range. Federal Register 77: 14914–14949.

    Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  • Vaughn, C. C. & D. E. Spooner, 2006. Unionid mussels influence macroinvertebrates assemblage structure in streams. Journal of the North American Benthological Society 25: 691–700.

    Article  Google Scholar 

  • Vaughn, C. C. & C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13: 912–920.

    Article  Google Scholar 

  • Vaughn, C. C., K. B. Gido & D. E. Spooner, 2004. Ecosystem processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia 527: 35–47.

    Article  Google Scholar 

  • Vaughn, C. C., D. E. Spooner & H. S. Galbraith, 2007. Context-dependent species identity effects within a functional group of filter-feeding bivalves. Ecology 88: 1654–1662.

    Article  PubMed  Google Scholar 

  • Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.

    Article  Google Scholar 

  • Waters, T. F., 1977. The Streams and Rivers of Minnesota. University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Watters, G. T., 1992. Unionids, fishes, and the species-area curve. Journal of Biogeography 19: 481–490.

    Article  Google Scholar 

  • Watters, G. T., 1999. Freshwater mussels and water quality: a review of the effects of hydrologic and instream habitat alterations. Proceedings of the First Freshwater Mollusk Conservation Society Symposium. Ohio Biological Survey, Columbus, OH: 261–274.

  • Williams, J. D., M. L. Warren Jr., K. S. Cummings, J. L. Harris & R. J. Neves, 1993. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18: 6–22.

    Article  Google Scholar 

Download references

Acknowledgments

We thank a number of Macalester College students who have participated in the collection of mussels over the years, Dan MacNalley and Guy Donnelly for providing access to the Sunrise River through their property, Konrad Schmidt of the MN Department of Natural Resources for discussions that improved this manuscript and Macalester College, the National Park Service, and the National Science Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Hornbach.

Additional information

Handling editor: Sonja Stendera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbach, D.J., Hove, M.C., Liu, HT. et al. The influence of two differently sized dams on mussel assemblages and growth. Hydrobiologia 724, 279–291 (2014). https://doi.org/10.1007/s10750-013-1743-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1743-y

Keywords

Navigation