Skip to main content
Log in

Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream

  • TRIBUTE TO STANLEY DODSON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Stream macrophytes are often removed with their sediments to deepen stream channels, stabilize channel banks, or provide habitat for target species. These sediments may support enhanced nitrogen processing. To evaluate sediment nitrogen processing, identify seasonal patterns, and assess sediment processes relative to stream load, we measured denitrification and nitrification rates in a restored third- to fourth-order agricultural stream, Black Earth Creek, Wisconsin, and estimated processing over a 10 km reach. Our results show that sediments with submerged and emergent macrophytes (e.g., Potomageton spp. and Phalaris arudinacea) support greater denitrification rates than bare sediments (1.12 μmol N g−1 h−1 vs. 0.29). Sediments with macrophytes were not carbon limited and organic matter fraction was weakly correlated to denitrification. The highest denitrification potential occurred in macrophyte beds (5.19 μmol N g−1 h−1). Nitrification rates were greater in emergent beds than bare sediments (1.07 μg N ml−1day−1 vs. 0.35) with the greatest nitrification rates during the summer. Total denitrification removal in sediments with macrophytes was equivalent to 43% of the nitrate stream load (463.7 kg N day−1) during spring and nitrification in sediments with macrophytes was equivalent to 247% of summer ammonium load (3.5 kg N day−1). Although the in-channel connectivity to nitrogen rich water was limited, actual stream nitrogen loads could increase with removal of macrophytes. Macrophyte beds and supporting fringing wetted areas are important if nitrogen management is a concern for riparian stream restoration efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, G. G. & J. D. Allan, 2006. Stream restoration in the Upper Midwest, USA. Restoration Ecology 14: 595–604.

    Article  Google Scholar 

  • Alexander, R. B., R. A. Smith & G. E. Schwarz, 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403: 758–761.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.

    Article  PubMed  CAS  Google Scholar 

  • Bernot, M. J. & W. K. Dodds, 2005. Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 8: 442–453.

    Article  CAS  Google Scholar 

  • Bodelier, P. L. E., J. A. Libochant, C. Blom & H. J. Laanbroek, 1996. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Applied and Environmental Microbiology 62: 4100–4107.

    PubMed  CAS  Google Scholar 

  • Bower, C. & T. Holm-Hansen, 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Sciences 37: 794–798.

    Article  CAS  Google Scholar 

  • Clarke, S. J., 2002. Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Progress in Physical Geography 26: 159.

    Article  Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1999. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography 44: 1993–1999.

    Article  CAS  Google Scholar 

  • Field, S. J. & D. J. Graczyk, 1990. Hydrology, aquatic macrophytes, and water quality of Black Earth Creek and its tributaries, Dane County, Wisconsin, 1985-86. U.S. Geological Survey Water-Resources Investigations Report 89-4089: 38.

  • Forshay, K. J. & E. H. Stanley, 2005. Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75: 43–64.

    Article  CAS  Google Scholar 

  • Galloway, J. N. & E. B. Cowling, 2002. Nitrogen and the world. Ambio 31: 64–71.

    PubMed  Google Scholar 

  • Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger & M. A. Sutton, 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892.

    Article  PubMed  CAS  Google Scholar 

  • Gift, D. M., P. M. Groffman, S. S. Kaushal & P. M. Mayer, 2010. Denitrification potential, root biomass, and organic matter in degraded and restored urban riparian zones. Restoration Ecology 18: 113–120.

    Article  Google Scholar 

  • Gregg, W. W. & F. L. Rose, 1982. The effects of aquatic macrophytes on the stream microenvironment. Aquatic Botany 14: 309–324.

    Article  Google Scholar 

  • Groffman, P. M., E. A. Holland, D. D. Myrold, G. P. Robertson & X. Zou, 1999. Denitrification. In Robertson, G. P., D. C. Coleman, C. S. Bledsoe & P. Sollins (eds), Standard Methods for Long-Term Ecological Research. Oxford University Press, New York: 272–290.

    Google Scholar 

  • Groffman, P. M., A. M. Dorsey & P. M. Mayer, 2005. N processing within geomorphic structures in urban streams. Journal of the North American Benthological Society 24: 613–625.

    Google Scholar 

  • Haggard, B. E., E. H. Stanley & D. E. Storm, 2005. Nutrient retention in a point-source-enriched stream. Journal of the North American Benthological Society 24: 29–47.

    Article  Google Scholar 

  • Hernandez, M. E. & W. J. Mitsch, 2007. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. Journal of Environmental Quality 36: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, R. M., J. B. Jones, S. G. Fisher & N. B. Grimm, 1996. Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33: 125–146.

    Article  Google Scholar 

  • Kaushal, S. S., P. M. Groffman, P. M. Mayer, E. Striz & A. J. Gold, 2008. Effects of stream restoration on denitrification in an urbanizing watershed. Ecological Applications 18: 789–804.

    Article  PubMed  Google Scholar 

  • Madsen, J. D. & M. S. Adams, 1988. The seasonal biomass and productivity of the submerged macrophytes in a polluted Wisconsin stream. Freshwater Biology 20: 41–50.

    Article  Google Scholar 

  • Madsen, T. V. & N. Cedergreen, 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology 47: 283–291.

    Article  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Mayer, P., P. Groffman, E. Striz & S. Kaushal, 2010. Nitrogen dynamics at the groundwater-surface water interface of a degraded urban stream. Journal of Environmental Quality 39: 810–823.

    Article  PubMed  CAS  Google Scholar 

  • Mosier, A. R., M. A. Bleken, P. Chaiwanakupt, E. C. Ellis, J. R. Freney, R. B. Howarth, P. A. Matson, K. Minami, R. Naylor, K. N. Weeks & Z.-l. Zhu, 2002. Policy implications of human-accelerated nitrogen cycling. Biogeochemistry 57–58: 477–516.

    Article  Google Scholar 

  • Mulholland, P. J., A. M. Helton, G. C. Poole, R. O. Hall, S. K. Hamilton, B. J. Peterson, J. L. Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, S. E. G. Findlay, S. V. Gregory, N. B. Grimm, S. L. Johnson, W. H. McDowell, J. L. Meyer, H. M. Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. Burgin, C. L. Crenshaw, L. T. Johnson, B. R. Niederlehner, J. M. O’Brien, J. D. Potter, R. W. Sheibley, D. J. Sobota & S. M. Thomas, 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452: 202–205.

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll, M. A. & D. R. DeWalle, 2010. Seeps regulate stream nitrate concentration in a forested Appalachian catchment. Journal of Environmental Quality 39: 420–431.

    Article  PubMed  Google Scholar 

  • Palijan, G., D. Fuks & J. Vidakovic, 2009. Spatial and temporal distribution of net nitrite and nitrate production on submersed macrophyte Ceratophyllum demersum L. Fresenius Environmental Bulletin 18: 64–69.

    CAS  Google Scholar 

  • Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E. Marti, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. Hamilton, S. Gregory & D. D. Morrall, 2001. Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Rabalais, N. N., R. E. Turner, D. Justic, Q. Dortch, W. J. Wiseman Jr. & B. K. S. Gupta, 1996. Nutrient changes in the Mississippi River and system response on the adjacent continental shelf. Estuaries 19: 386–407.

    Article  CAS  Google Scholar 

  • Risgaard-Petersen, N. & K. Jensen, 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography 42: 529–537.

    Article  CAS  Google Scholar 

  • Royer, T. V., J. L. Tank & M. B. David, 2004. Transport and fate of nitrate in headwater agricultural streams in Illinois. Journal of Environment Quality 33: 1296–1304.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K., 1998. Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biology 39: 663–679.

    Article  Google Scholar 

  • Schaller, J. L., T. V. Royer, M. B. David & J. L. Tank, 2004. Denitrification associated with plants and sediments in an agricultural stream. Journal of the North American Benthological Society 23: 667–676.

    Article  Google Scholar 

  • Seitzinger, S., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography 33: 702–724.

    Article  CAS  Google Scholar 

  • Strauss, E. A. & G. A. Lamberti, 2000. Regulation of nitrification in aquatic sediments by organic carbon. Limnology and Oceanography 45: 1854–1859.

    Article  Google Scholar 

  • Strauss, E. A., N. L. Mitchell & G. A. Lamberti, 2002. Factors regulating nitrification in aquatic sediments: effects of organic carbon, nitrogen availability, and pH. Canadian Journal of Fisheries and Aquatic Sciences 59: 554–563.

    Article  CAS  Google Scholar 

  • Strauss, E., J. Cavanaugh, J. Heinz, W. Richardson, L. Bartsch, D. Bruesewitz, H. Imker & D. Soballe, 2004. Nitrification in the Upper Mississippi River: patterns, controls, and contribution to the NO3− budget. Journal of the North American Benthological Society 23: 1–14.

    Article  Google Scholar 

  • Tiedje, J. M., S. Simkins & P. M. Groffman, 1989. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant and Soil 115: 261–284.

    Article  Google Scholar 

  • Wood, E. D., 1967. Determination of Nitrate in Sea Water by Cadmium-Copper Reduction of Nitrate. Dept. of Oceanography, University of Washington, Seattle.

    Google Scholar 

  • Young, C. L., 1981. Solubility Data Series. Oxides of Nitrogen, Vol. 8. Pergamon Press, New York.

Download references

Acknowledgments

We thank Bob Stelzer, Harry Read, Sarah Kerr, Paul Mayer, and Phil Emmling for technical assistance. Jessica Wallace, Christine Donahoe, Bridget Forshay, Francis J. Nuñez, Max Gehrman, and Jennifer Rutka provided field and lab support. The Milwaukee Zoological Society, the Summer Science Institute, and UW Department of Zoology grants provided support for this work. Notice: The research described herein was developed by the author, an employee of the U.S. Environmental Protection Agency (EPA), prior to his employment with EPA. It was conducted independent of EPA employment and has not been subjected to the Agency’s peer and administrative review. Therefore, the conclusions and opinions drawn are solely those of the author and are not necessarily the views of the Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Forshay.

Additional information

Guest editors: H. J. Dumont, J. E. Havel, R. Gulati & P. Spaak / A Passion for Plankton: a tribute to the life of Stanley Dodson

Stanley I. Dodson died on 23 August 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forshay, K.J., Dodson, S.I. Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream. Hydrobiologia 668, 21–34 (2011). https://doi.org/10.1007/s10750-011-0619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0619-2

Keywords

Navigation