Skip to main content

Advertisement

Log in

Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The development of a diabetic cardiomyopathy is a multifactorial process, and evidence is accumulating that defects in intracellular free calcium concentration [Ca2+]i or its homeostasis are related to impaired mechanical performance of the diabetic heart leading to a reduction in contractile dysfunction. Defects in ryanodine receptor, reduced activity of the sarcoplasmic reticulum calcium pump (SERCA) and, along with reduced activity of the sodium-calcium exchanger (NCX) and alterations in myofilament, collectively cause a calcium imbalance within the diabetic cardiomyocytes. This in turn is characterized by cytosolic calcium overloading or elevated diastolic calcium leading to heart failure. Numerous studies have been performed to identify the cellular, subcellular, and molecular derangements in diabetes-induced cardiomyopathy (DCM), but the precise mechanism(s) is still unknown. This review focuses on the mechanism behind DCM, the onset of contractile dysfunction, and the associated changes with special emphasis on hyperglycemia, mitochondrial dysfunction in the diabetic heart. Further, management strategies, including treatment and emerging therapeutic modalities, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jacobsen IB, Henriksen JE, Hother-Nielsen O, Vach W, Beck-Nielsen H (2009) Evidence-based insulin treatment in type 1 diabetes mellitus. Diabetes Res Clin Pract 86:1–10

    Article  CAS  PubMed  Google Scholar 

  2. American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1):S62–S67

    Article  PubMed Central  Google Scholar 

  3. Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615

    Article  CAS  PubMed  Google Scholar 

  4. Schafer SA, Machicao F, Fritsche A, Häring HU, Kantartzis K (2011) New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms. Diabetes Res Clin Pract 93(Suppl 1):S9–24

    Article  PubMed  CAS  Google Scholar 

  5. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:H1489–H1506

    Article  CAS  PubMed  Google Scholar 

  6. Long A, Jack SD (2011) The comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J Clin Hypertens (Greenwich) 13(4):244–251. https://doi.org/10.1111/j.1751-7176.2011.00434.x

    Article  Google Scholar 

  7. NCD Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387:1513–1530

    Article  Google Scholar 

  8. Anand SS, Yusuf S (2011) Stemming the global tsunami of cardiovascular disease. Lancet 377:529–532

    Article  PubMed  Google Scholar 

  9. Singh RM, Cummings E, Pantos C, Singh J (2017) Protein kinase C and cardiac dysfunction: a review. Heart Fail Rev 22:843–859. https://doi.org/10.1007/s10741-017-9634-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G (2013) Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes 4:177–189

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease: the Framingham study. JAMA 241:2035–2038

    Article  CAS  PubMed  Google Scholar 

  12. Lee WS, Kim J (2017) Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med 32:404–421

    Article  PubMed  PubMed Central  Google Scholar 

  13. Isfort M, Stevens SCW, Schaffer S, Jong CJ, Wold LE (2014) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev 19(1):9377–9388

    Article  CAS  Google Scholar 

  14. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757

    Article  PubMed  Google Scholar 

  15. Gilca GM, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M (2017) Diabetic cardiomyopathy: current approach and potential diagnostic and therapeutic targets. J Diabetes Res. https://doi.org/10.1155/2017/1310265

  16. Wang ZV, Hill JA (2015) Diabetic cardiomyopathy: catabolism-driving metabolism. Circulation 131:771–773

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  18. Belke DD, Larsen TS, Gibbs EM, Severson DL (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279:E1104–E1113

    Article  CAS  PubMed  Google Scholar 

  19. Bhimji S, Godin DV, McNeill JH (1986) Myocardial ultrastructural changes in alloxan-induced diabetes in rabbits. Acta Anat (Basel) 125:195–200

    Article  CAS  Google Scholar 

  20. Forsterman U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714

    Article  CAS  Google Scholar 

  21. Jia G, DeMarco VG, Sowers JR (2016) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12:144–153

    Article  CAS  PubMed  Google Scholar 

  22. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  23. Choi SW, Benzie IF, Ma SW, Strain JJ, Hannigan BM (2008) Acute hyperglycaemia and oxidative stress: direct cause and effect? Free Radic Biol Med 44:1217–1231

    Article  CAS  PubMed  Google Scholar 

  24. Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE (2006) Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47:2726–2737

    Article  CAS  PubMed  Google Scholar 

  25. Lebeche D, Davidoff AJ, Hajjar RJ (2008) Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. Nat Clin Pract Cardiovasc Med 5:715–724

    Article  CAS  PubMed  Google Scholar 

  26. Minamino T, Komuro I, Kitakaze M (2010) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 107(9):1071–1082

    Article  CAS  PubMed  Google Scholar 

  27. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  28. Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 77:S26–S30

    Article  CAS  PubMed  Google Scholar 

  29. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    Article  CAS  PubMed  Google Scholar 

  30. Choi YS, Kim S, Pak YK (2001) Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract 54(Suppl 2):S3–S9

    Article  CAS  PubMed  Google Scholar 

  31. Kanazawa A, Nishio Y, Kashiwagi A, Inagaki H, Kikkawa R, Horiike K (2002) Reduced activity of mtTFA decreases the transcription in mitochondria isolated from diabetic rat heart. Am J Physiol Endocrinol Metab 282:E778–E785

    Article  CAS  PubMed  Google Scholar 

  32. Bishop SP, Altschuld RA (1970) Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Phys 218(1):153–159

    CAS  Google Scholar 

  33. Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, Gropler RJ (2006) Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol 47(3):598–604

    Article  CAS  PubMed  Google Scholar 

  34. Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, Patil S, Youker KA, Taegtmeyer H (2002) Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 51(8):2587–2595

    Article  CAS  PubMed  Google Scholar 

  35. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109(1):121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Awan MM, Saggerson ED (1993) Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J 295(Pt 1):61–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stanley WC, Lopaschuk GD, McCormack JG (1997) Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 34(1):25–33

    Article  CAS  PubMed  Google Scholar 

  38. Huang B, Wu P, Popov KM, Harris RA (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 52(6):1371–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Randle PJ, Garland PB, Hales CN, Newsholme EA, Denton RM, Pogson CI (1966) Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res 22:1–48

    CAS  PubMed  Google Scholar 

  40. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    Article  CAS  PubMed  Google Scholar 

  41. Sambandam N, Lopaschuk GD (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42:238–256

    Article  CAS  PubMed  Google Scholar 

  42. Schaffer SW, Seyed-Mozaffari M, Cutcliff CR, Wilson GL (1986) Postreceptor myocardial metabolic defect in a rat model of non-insulin-dependent diabetes mellitus. Diabetes 35:593–597

    Article  CAS  PubMed  Google Scholar 

  43. Bowman RH (1966) Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart. J Biol Chem 241:3041–3048

    CAS  PubMed  Google Scholar 

  44. Kuo TH, Moore KH, Giacomelli F, Wiener J (1983) Defective oxidative metabolism of heart mitochondria from genetically diabetic mice. Diabetes 32:781–787

    Article  CAS  PubMed  Google Scholar 

  45. Pierce GN, Dhalla NS (1985) Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1:48–54

    CAS  PubMed  Google Scholar 

  46. Tomita M, Mukae S, Geshi E, Umetsu K, Nakatani M, Katagirl T (1996) Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn Circ J 60:673–682

    Article  CAS  PubMed  Google Scholar 

  47. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112:2686–2695

    Article  PubMed  Google Scholar 

  48. Suarez J, Hu Y, Makino A, Fricosky E, Wang H, Dillmann WH (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am J Physiol Cell Physiol 295:C1561–C1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rogers TB, Gaa ST, Massey C, Dosemeci A (1990) Protein kinase C inhibits Ca21 accumulation in cardiac sarcoplasmic reticulum. J Biol Chem 265:4302–4308

    CAS  PubMed  Google Scholar 

  50. Noland TA Jr, Kuo JF (1991) Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2+-stimulated actomyosin MgATPase activity. J Biol Chem 266:4974–4978

    CAS  PubMed  Google Scholar 

  51. Malhotra A, Reich D, Nakouzi A, Sanghi V, Geenen DL, Buttrick PM (1997) Experimental diabetes is associated with functional activation of protein kinase C and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ Res 81:1027–1033

    Article  CAS  PubMed  Google Scholar 

  52. Liu X, Takeda N, Dhalla NS (1996) Troponin I phosphorylation in heart homogenate from diabetic rat. Biochim Biophys Acta 1316:78–84

    Article  PubMed  Google Scholar 

  53. Okumura K, Akiyama N, Hashimoto H, Ogawa K, Satake T (1988) Alteration of 1,2,-diacylglycerol content in myocardium from diabetic rats. Diabetes 37:1168–1172

    Article  CAS  PubMed  Google Scholar 

  54. Liu X, Wang J, Nobuakira T, Binaglia L, Panagia V, Dhalla NS (1999) Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes. Am. J. Physiol. 277 (Endocrinol. Metab. 40): E798–E804

  55. Isfort M, Stevens SCW, Schaffer S, Jong CJ, Wold LE (2014) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev 19(1). https://doi.org/10.1007/s10741-013-9377-8

  56. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  57. Mortuza R, Chakrabarti S (2014) Glucose-induced cell signalling in the pathogenesis of diabetic cardiomyopathy. Heart Fail Rev 19:75–86

    Article  CAS  PubMed  Google Scholar 

  58. Dhalla NS, Takeda N, Rodriguez-Leyva D, Elimban V (2014) Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev 19:87–99. https://doi.org/10.1007/s10741-013-9385-8

    Article  CAS  PubMed  Google Scholar 

  59. Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodelling and heart dysfunction in chronic diabetes. Cardiovasc Res 40(2):239–247

    Article  CAS  PubMed  Google Scholar 

  60. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Nature 54:1615–1625

    CAS  Google Scholar 

  61. Doron A (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of ageing and diabetes. J Hypertens 21:3–12

    Article  Google Scholar 

  62. Asbun J, Villareal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700

    Article  CAS  PubMed  Google Scholar 

  63. Masoudi FA, Inzucchi SE (2007) Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol 99:113–132

    Article  CAS  Google Scholar 

  64. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scott JA, King GL (2004) Oxidative stress and antioxidant treatment in diabetes. Ann N Y Acad Sci 1031:204–213

    Article  CAS  PubMed  Google Scholar 

  66. Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dobrin JS, Lebeche D (2010) Diabetic cardiomyopathy: signalling defects and therapeutic approaches. Exp Rev Cardiovasc Ther 8:373–391

    Article  CAS  Google Scholar 

  68. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792

    Article  CAS  PubMed  Google Scholar 

  69. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchunk N, Ratner RE, Inzucchi SE (2009) DIAD investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study, a randomized controlled trial. JAMA 301:1547–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cai L, Wang Y, Zhou G, Chen T, Li X, Kang YJ (2006) Attenuation by metallo-thionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697

    Article  CAS  PubMed  Google Scholar 

  71. Guo Z, Xia Z, Jiang J, McNeil JH (2007) Down-regulation of NADPH oxidase, antioxidant enzymes and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N enzymes. Am J Physiol Heart Circ Physiol 292:H1728–H1736

    Article  CAS  PubMed  Google Scholar 

  72. Schleicher ED, Weigert C (2000) Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Intern. 58:S-13–S-18

  73. Mohora M, Greabu M, Muscurel C, Duta C, Totan A (2007) The sources and the targets of oxidative stress in the aetiology of diabetic complications. Rom J Biophys 17:63–84

    CAS  Google Scholar 

  74. Belke DD, Dillmann WH (2004) Altered cardiac calcium handling in diabetes. Curr Hypertens Rep 6:424–429

    Article  PubMed  Google Scholar 

  75. Woodcock EA, Matkovich SJ (2005) Cardiomyocytes structure, function and associated pathologies. Inter J Biochem Cell Biol 37:1746–1751

    Article  CAS  Google Scholar 

  76. Roderick HL, Bootman MD (2007) Pacemaking, arrhythmias, inotropy and hypertrophy: the many possible facets of IP3 signalling in cardiac myocytes. J Physiol 581(3):883–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bers DM, Eisner DA, Valdivia HH (2003) Sarcopalsmic reticulum Ca2+ transport and heart failure: roles of diastolic leak and Ca2+ Circ Res. 93:487-490

  78. Hilgemnn DW (2004) New insights into the molecular and cellular workings of the cardiac Na+/Ca2+ exchanger. Am J Physiol Cell Physiol 287(5):C1167–C1172

    Article  CAS  Google Scholar 

  79. Mackrill JJ (2010) Ryanodine receptor calcium channels and their partners as drug targets. Biochem Pharmacol 79:1535–1543

    Article  CAS  PubMed  Google Scholar 

  80. Kushnir AA, Betzenhauser MJ, Marks AR (2010) Ryanodine receptor studies using genetically engineered mice. FEBS Lett 584:1956–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hasenfuss G, Schillinger W (2004) Is modulation of sodium-calcium exchange a therapeutic option in heart failure? Circ Res 95:225–227

    Article  CAS  PubMed  Google Scholar 

  82. Franzini-Armstrong C (1970) Studies of the triad. J Cell Biol 47:488–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Campbell K, Franzini-Armstrong C, Shamoo A (1980) Further characterisation of light and heavy sarcoplasmic reticulum vesicles. Identification of the ‘sarcoplasmic reticulumfeet’ associated with heavy sarcoplasmic reticulum-vesicles. Biochem Biophys Acta 602:97–116

    Article  CAS  PubMed  Google Scholar 

  84. Lai FA, Anderson K, Rousseau E, Liu QY, Meissner G (1988) Evidence for a Ca2+ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun 151:441–449

    Article  CAS  PubMed  Google Scholar 

  85. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    Article  CAS  PubMed  Google Scholar 

  86. Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, Maclennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2256

    CAS  PubMed  Google Scholar 

  87. Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD, Lai FA (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318:477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312:229–235

    Article  CAS  PubMed  Google Scholar 

  89. Hillyard I, Procia L (1956) Action of ryanodine on isolated kitten auricle. Fed Proc 15:438–449

    Google Scholar 

  90. Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261:6300–6306

    CAS  PubMed  Google Scholar 

  91. Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93:487–490

    Article  CAS  PubMed  Google Scholar 

  92. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200

    Article  CAS  PubMed  Google Scholar 

  93. George CH, Jundi H, Thomas NL, Fry DL, Lai FA (2007) Ryanodine receptors and ventricular arrhythmias: emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol 42:34–50

    Article  CAS  PubMed  Google Scholar 

  94. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Phys 244:E528–E535

    CAS  Google Scholar 

  95. Pierce GN, Ramjiawan B, Dhalla NS, Ferrari R (1990) Na+-H+ exchange in cardiac sarcolemmal vesicles isolated from diabetic rats. Am J Phys 258:H255–H261

    CAS  Google Scholar 

  96. Makino N, Dhalla KS, ElimbanV DNS (1987) Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Phys 253:E202–E207

    CAS  Google Scholar 

  97. Lun SL, Ostadalova I, Kolar DNS (1992) Alterations in Ca2+-channels during the development of diabetic cardiomyopathy. Mol Cell Biochem 109(2):173–179

    Google Scholar 

  98. Dhalla NS, Rangi S, Zieroth S, Xu YJ (2012) Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol 17(3):115–120

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O’Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE (2004) Targeted ablation of plasma membrane Ca2+−ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750

    Article  CAS  PubMed  Google Scholar 

  100. Orio P, Rojas P, Ferreira G, Latorre R (2002) New disguises for an old channel: MaxiK channel subunits. News Physiol Sci 17:156–161

    CAS  PubMed  Google Scholar 

  101. Liu N, Colombi B, Memmi M, Zissimopoulos S, Rizzi N, Imbriani M, Napolitano C, Lai FA, Priori SG (2006) Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ Res 99:292–298

    Article  CAS  PubMed  Google Scholar 

  102. Periasamy M, Huke S (2001) SERCA pump level is a critical determinant of Ca2+ homeostasis and cardiac contractility. J Mol Cell Cardiol 33:1053–1063

    Article  CAS  PubMed  Google Scholar 

  103. Searls YM, Loganathan R, Smirnova IV, Stehno-Bittel L (2010) Intracellular Ca2+ regulating proteins in vascular smooth muscle cells are altered with type 1 diabetes due to the direct effects of hyperglycemia. Cardiovasc Diabetol 9(8). https://doi.org/10.1186/1475/-2840-9-8

  104. Abe T, Ohga Y, Tabayashi N, Kobayashi S (2002) Left ventricular diastolic dysfunction in type II diabetes mellitus model rats. Am J Heart Circ Physiol 282:H139–H148

    Article  Google Scholar 

  105. Wold LE, Dutta K, Mason MM, Ren J, Cala SE, Schwanke ML, Davidoff AJ (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J Mol Cell Cardiol 39:297–307

    Article  CAS  PubMed  Google Scholar 

  106. Zarain-Herzberg A, Yano K, Elimban V, Dhalla NS (1994) Cardiac sarcoplasmatic reticulum Ca2+−ATPase expression in streptozotocin-induced diabetic rat. Biochem Biophys Res Commun 203:113–120

    Article  CAS  PubMed  Google Scholar 

  107. Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic rat heart. Am J Physiol Heart Circ Physiol 281:H1137–H1147

    Article  CAS  PubMed  Google Scholar 

  108. Aoyagi T, Yonekura K, Eto Y, Matsumoto A, Yokoyama I, Sugiura S, Momomura S, Hirata Y, Baker DL, Periasamy M (1999) The sarcoplasmic reticulum Ca2+ ATPase gene promoter activity is decreased in response to severe left ventricular pressure-overload in hypertrophy rats. J Moll Cell Cardiol 31:919–916

    Article  CAS  Google Scholar 

  109. Connelly KA, Gilbert RE, Krum H (2007) Letter by Connelly et al regarding article, “diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension”. Circ. 117 (23) e483; author reply e484

  110. Fredersdorf S, Thumann C, Zimmerman WH, Vetter R, Graf T, Luchner A, Riegger GA, Schunkert H, Eschenhagen T, Weil J (2012) Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: in vivo and in vitro data. Cardiovasc Diabetol 11(57):1–11

    Google Scholar 

  111. Lacombe K, Massari V, Girard P, Serfaty L, Gozlan J, Pialoux G, Mialhes P, Molina JM, Lascoux-Combe C, Wendum D, Carrat F, Zoulim F (2006) Major role of hepatitis B genotypes in liver fibrosis during coinfection with HIV. AIDS 20:419–427

    Article  PubMed  Google Scholar 

  112. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  113. Bracken NK, Singh J, Winlow W, Howarth FC (2003) Mechanism underlying contractile dysfunction in streptozotocin-induced type 1 and type 2 diabetic cardiomyopathy. In: Pierce GN, Nagano M, Zahradka P, Dhalla NS (eds) Atherosclerosis, Hypertension and diabetes. Progress in experimental cardiology, vol 8. Springer, Boston, MA, pp 387–408

    Chapter  Google Scholar 

  114. Howarth FC, Singh J (1999) Altered handling of calcium during the process of excitation-contraction coupling in the streptozotocin-induced diabetic heart: a short review. Int J Diabetes 7:52–64

    Google Scholar 

  115. Pandit SV, Giles WR, Demir SS (2003) A mathematic model of the electrophysiological alterations in rat ventricular myocyte in type 1 diabetes mellitus. Biophys J 84:832–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Howarth FC, Qureshi MA, Bracken NK, Winlow W, Singh J (2001) Time dependant effects of streptozotocin-induced diabetes on contraction in rat ventricular myocytes. Emirates J 19:25–41

    Google Scholar 

  117. Singh J, Chonkar A, Bracken N, Adeghate E, Latt Z, Hussain M (2006) Effect of streptozotocin-induced type 1 diabetes mellitus on contraction, calcium transient, and cation contents in the isolated rat heart. Ann N Y Acad Sci 1084:178–190

    Article  CAS  PubMed  Google Scholar 

  118. Sheikh AQ, Hurley JR, Huang W, Taghian T, Kogan A, Hongkwan C, Wang Y (2012) Diabetes alters intracellular calcium transients in cardiac endothelial cells. PLoS One 7(5):e36840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208

    Article  CAS  PubMed  Google Scholar 

  120. Salem KA, Qureshi MA, Sydorenko V, Iqbal T, Singh J, Howarth C (2013) Effects of exercise training on excitation-contraction coupling and related mRNA expression in hearts of Goto-Kakizaki type 2 diabetic rats. Mol Cell Biochem 380(1–2):83–96

    Article  CAS  PubMed  Google Scholar 

  121. Zhang H, Chen X, Gao E, MacDonnell SM, Wang W, Kolpakov M, Nakayama H, Zhang X, Jaleel N, Harris DM, Li Y, Tang M, Berretta R, Leri A, Kajstura J, Sabri A, Koch WJ, Molkentin JD, Houser SR (2010) Increasing cardiac contractility after myocardial infarction exacerbates cardiac injury and pump dysfunction. Circ Res 107:800–809. https://doi.org/10.1161/CIRCRESAHA.110.219220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nemoto O, Kawaguchi M, Yaoita H, Miyake K, Maehara K, Maruyama Y (2006) Left ventricular dysfunction and remodeling in streptozotocin-induced diabetic rats. Circ J 70:327–334

    Article  PubMed  Google Scholar 

  123. D'Souza A, Howarth FC, Yanni J, Dobryznski H, Yanni J, Dobryznski H, Boyett MR, Adeghate E, Bidasee KR, Singh J (2011) Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 96(9):b875–b888

    Article  Google Scholar 

  124. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh Sullivan MJ (1991) Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol 17:1065–1072

    Article  CAS  PubMed  Google Scholar 

  125. Gandhi SK, Powers JC, Nomeir AM, Fowle K, Kitzman DW, Rankin KM, Little WC (2001) The pathogenesis of acute pulmonary oedema associated with hypertension. N Engl J Med 344:17–22

    Article  CAS  PubMed  Google Scholar 

  126. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D (1999) Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population based cohort. J Am Coll Cardiol 33:1948–1955

    Article  CAS  PubMed  Google Scholar 

  127. Pieske B, Wachter R (2008) Impact of diabetes and hypertension on the heart. Curr Opin Cardiol 23:340–349

    Article  PubMed  Google Scholar 

  128. Ren X, Ristow B, Na B, Ali S, Schiller NB, Whooley MA (2007) Prevalence and prognosis of asymptomatic left ventricular diastolic dysfunction in ambulatory patients with coronary heart disease. Am J Cardiol 99:1643–1647

    Article  PubMed  PubMed Central  Google Scholar 

  129. Iribarren C (2001) Glycemic control and heart failure among adult patients with diabetes. Circ. 103:2668–2673

    Article  CAS  Google Scholar 

  130. Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr (2004) Heart failure prevalence, Incidence, and Mortality in the Elderly With Diabetes. Diabetes Care 27:344–348

    Article  Google Scholar 

  131. Burkhoff D (2012) Mortality in heart failure with preserved ejection fraction: an unacceptably high rate. Eur Heart J 33:1718–1720

    Article  PubMed  Google Scholar 

  132. MacDonald MR, Petrie MC, Varyani F, Ostergren J, Michelson EL, Young JB, Solomon SD, Granger CB, Swedberg K, Yusuf S, Pfeffer MA, McMurray JJ (2008) Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure. Eur Heart J 29:1377–1385

    Article  PubMed  Google Scholar 

  133. Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG (2001) Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of manoeuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 24:1–5

    Article  Google Scholar 

  134. Andersen NH, Poulsen SH, Helleberg K, Ivarsen P, Knudsen ST, Mogensen CE (2003) Impact of essential hypertension and diabetes mellitus on left ventricular systolic and diastolic performance. Eur J Echocardiogr 4:306–312

    Article  CAS  PubMed  Google Scholar 

  135. Magri CJ, Cassar A, Fava S, Felice H (2012) Heart failure with preserved ejection fraction and diabetes mellitus. J Diabetes Res Clin Metab. https://doi.org/10.7243/2050-0866-1-2

  136. Ehl NF, Kuhne M, Brinkert M, Muller-Brand J, Zellweger MJ (2011) Diabetes reduces left ventricular ejection fraction-irrespective of presence and extent of coronary artery disease. Eur J Endocrinol 165:945–951

    Article  CAS  PubMed  Google Scholar 

  137. Wong CY, O’Moore-Sullivan T, Leano R, Byrne BE, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circ. 110:3081–3087

    Article  Google Scholar 

  138. Heerebeek VL, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M, Borbély A, van der Velden J, Stienen GJ, Laarman GJ, Niessen HW, Paulus WJ (2008) Diastolic stiffness of the failing diabetic heart. Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circ. 117:43–51

    Article  Google Scholar 

  139. Borlaug BA, Lam CSP, Roger VL, Rodeheffer RJ, Redfield MM (2009) Contractility and ventricular systolic stiffening in hypertensive heart disease. J Am Coll Cardiol 54:410–418

    Article  PubMed  PubMed Central  Google Scholar 

  140. Maeder MT, Kaye DM (2009) Heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol 53:11–16

    Article  Google Scholar 

  141. Periasamy M, Janssen ML (2008) Molecular basis of diastolic dysfunction. Heart Fail Clin 4(1):13–21

    Article  PubMed  PubMed Central  Google Scholar 

  142. Aurigemma GP, Gaasch WH (2004) Clinical practice. Diastolic heart failure N Engl J Med 351:1097–1105

    CAS  PubMed  Google Scholar 

  143. Pierce GN, Dhalla NS (1981) Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 13:1063–1069

    Article  CAS  PubMed  Google Scholar 

  144. Pierce GN, Dhalla NS (1985) Mechanisms of the defect in cardiac myofibrillar function during diabetes. Am J Phys 248:E170–E175

    Article  CAS  Google Scholar 

  145. Jweied EE, McKinney RD, Walker LA, Brodsky I, Geha AS, Massad MG, Buttrick PM, de Tombe PP (2005) Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 289:H2478–H2483

    Article  CAS  PubMed  Google Scholar 

  146. Kodama S, Tanaka S, Heianza Y, Fujihara K, Horikawa C, Shimano H, Saito K, Yamada N, Ohashi Y, Sone H (2013) Association between physical activity and risk of all-cause mortality and cardiovascular disease in patients with diabetes: a meta-analysis. Diabetes Care 36:471–479

    Article  PubMed  PubMed Central  Google Scholar 

  147. Stolen TO, Hoydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, Larsen T, Rolim N, Condorelli G, Smith GL, Wisløff U (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105:527–536

    Article  PubMed  CAS  Google Scholar 

  148. Epp RA, Susser SE, Morissette MP, Kehler DS, Jassal DS, Duhamel TA (2013) Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet. Can J Physiol Pharmacol 91:80–89

    Article  CAS  PubMed  Google Scholar 

  149. DeMarco VG, Aroor AR, Sowers JR (2014) The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 10:364–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Voulgari C, Papadogiannis D, Tentolouris N (2010) Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 6:883–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Adler AI, Neil HA, Manley SE, Holman RR, Turner RC (1999) Hyperglycemia and hyperinsulinemia at diagnosis of diabetes and their association with subsequent cardiovascular disease in the United Kingdom prospective diabetes study (UKPDS 47). Am Heart J 138:S353–S359

    Article  CAS  PubMed  Google Scholar 

  152. Chung J, Abraszewski P, Yu X et al (2006) Paradoxical increase in ventricular torsion and systolic torsion rate in type I diabetic patients under tight glycemic control. J Am Coll Cardiol 47:384–390

    Article  PubMed  Google Scholar 

  153. Sharma AK, Srinivasan BP (2009) Triple verses glimepiride plus metformin therapy on cardiovascular risk biomarkers and diabetic cardiomyopathy in insulin resistance type 2 diabetes mellitus rats. Eur J Pharm Sci 38:433–444

    Article  CAS  PubMed  Google Scholar 

  154. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  155. Wong AK, Symon R, AlZadjali MA, Ang DS, Ogston S, Choy A, Petrie JR, Struthers AD, Lang CC (2012) The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail 14:1303–1310

    Article  CAS  PubMed  Google Scholar 

  156. von Bibra H, St John Sutton M (2011) Impact of diabetes on postinfarction heart failure and left ventricular remodeling. Curr Heart Fail Rep 8:242–251

    Article  Google Scholar 

  157. Mamas MA, Deaton C, Rutter MK, Yuille M, Willams SG, Ray SG, Gibson JM, Neyses L (2010) Impaired glucose tolerance and insulin resistance in heart failure: under recognized and undertreated? J Card Fail 16:761–768

    Article  CAS  PubMed  Google Scholar 

  158. Young LH (2003) Insulin resistance and the effects of thiazolidinediones on cardiac metabolism. Am J Med 115:75S–80S

    Article  CAS  PubMed  Google Scholar 

  159. Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HL, Broedi UC, Johnasen OE (2015) SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 12:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Doehner W, Frenneaux M, Anker SD (2014) Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol 64:1388–1400

    Article  PubMed  Google Scholar 

  161. Bostick B, Habibi J, Ma L, Aroor A, Rehmer N, Hayden MR, Sowers JR (2014) Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of western diet induced obesity. Metabolism 63:1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen YH, Feng B, Chen ZW (2012) Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp Clin Endocrinol Diabetes 120:116–120

    Article  CAS  PubMed  Google Scholar 

  163. Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J, Baigent C (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125

    Article  CAS  Google Scholar 

  164. Van Linthout S, Riad A, Dhayat N, Spillman F, Du J, Westermann D, Hilfiker-Kleiner D, Noutsias M, Laufs U, Schultheiss HO, Tschope C (2007) Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 50:1977–1986

    Article  PubMed  CAS  Google Scholar 

  165. Dai QM, Lu J, Liu NF (2011) Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor. Chin Med J 124:89–94

    PubMed  Google Scholar 

  166. Lowes BD, Gill EA, Abraham WT, Larrain JR, Robertson AD, Bristow MR, Gilbert EM (1999) Effects of carvedilol on left ventricular function mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol 83:1201–1205

    Article  CAS  PubMed  Google Scholar 

  167. Waagstein F, Bristow M, Swedburg K (1993) Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet 342:1441–1446

    Article  CAS  PubMed  Google Scholar 

  168. The Cardiac Insufficiency Bisoprolol Study (CIBIS) Investigators and Committees (1994) A randomised trial of β-blockade in heart failure: the Cardiac Insufficiency Bisoprolol Study (CIBIS). Circ. 90:1765–1773

    Article  Google Scholar 

  169. CIBIS II Investigators and Committees (1999) The Cardiac Insufficiency Bisoprolol Study (CIBIS II): a randomised trial. Lancet 353:9–13

    Article  Google Scholar 

  170. Merit-HF Study Group (1999) Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353:2001–2007

    Article  Google Scholar 

  171. Packer M, Bristow M, Cohn J (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 334:1349–1355

    Article  CAS  PubMed  Google Scholar 

  172. Bristow MR (2001) Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101:558–569

    Article  Google Scholar 

  173. Sharma V, McNeill JH (2011) Parallel effects of β-adrenoceptor blockade on cardiac function and fatty acid oxidation in the diabetic heart: confronting the maze. World J Cardiol 3:281–302

    Article  PubMed  PubMed Central  Google Scholar 

  174. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:2159–2219

    Google Scholar 

  175. Thomas CM, Yong QC, Seqqat R, Chandel N, Feldman DL, Baker KM, Kumar R (2013) Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin Sci (Lond) 124:529–541

    Article  CAS  Google Scholar 

  176. Machackova J, Liu X, Lukas A, Dhalla NS (2004) Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 261:271–278

    Article  CAS  PubMed  Google Scholar 

  177. Symeonides P, Koulouris S, Vratsista E, Triantafyllou K, Ioannidis G, Thalassinos N, Katritsis D (2007) Both ramipril and telmisartan reverse indices of early diabetic cardiomyopathy: a comparative study. Eur J Echocardiogr 8:480–486

    Article  PubMed  Google Scholar 

  178. Szabo C (2002) PARP as a drug target for the therapy of diabetic cardiovascular dysfunction. Drug News Perspect 15:197–205

    Article  CAS  PubMed  Google Scholar 

  179. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003) Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhao P, Zhang J, Yin XG, Maharaj P, Narraindoo S, Cui LQ, Tang YS (2013) The effect of trimetazidine on cardiac function in diabetic patients with idiopathic dilated cardiomyopathy. Life Sci 92:633–638

    Article  CAS  PubMed  Google Scholar 

  181. Li YJ, Wang PH, Chen C, Zou MH, Wang DW (2010) Improvement of mechanical heart function by trimetazidine in db/db mice. Acta Pharmacol Sin 31:560–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M (2010) Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 298:H833–H843

    Article  CAS  PubMed  Google Scholar 

  183. Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Sander J, Lang C, Wachter R, Edelmann F, Hasenfuss G, Jacobshagen C (2013) RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail 1:115–122

    Article  PubMed  Google Scholar 

  184. Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142:375–415

    Article  CAS  PubMed  Google Scholar 

  185. Leon LE, Rani S, Fernandez M, Larico M, Calligaris SD (2016) Subclinical detection of diabetic cardiomyopathy withMicroRNAs: challenges and perspectives. J Diabetes Res. https://doi.org/10.1155/2016/6143129

  186. Yildirim SS, Akman D, Catalucci D, Turan B (2013) Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1. Cell Biochem Biophys 67:1397–1408

    Article  CAS  PubMed  Google Scholar 

  187. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984. https://doi.org/10.1038/nature07511

    Article  CAS  PubMed  Google Scholar 

  188. Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, Goldblatt CS, Meyer CJ, Li X, Cai L, Cui T (2011) Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 60(2):625–633. https://doi.org/10.2337/db10-1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mortensen SA, Rosenfeldt F, Kumar A et al (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2:641–649

    Article  PubMed  Google Scholar 

  190. Xu YJ, Tappia PS, Neki NS, Dhalla NS (2014) Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev 19:113–121

    Article  CAS  PubMed  Google Scholar 

  191. Huynh K, Kiriazis H, Du XJ, Love JE, Jandeleit-Dahm KA, Forbes JM, McMullen JR, Ritchie RH (2012) Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 55:1544–1553

    Article  CAS  PubMed  Google Scholar 

  192. Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G, Oikawa A, Cesslli D, Beltram AP, Giacca M, Emanuel C, Madeddu P (2011) Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 108:1238–1251

    Article  CAS  PubMed  Google Scholar 

  193. Meloni M, Descamps B, Caporali A, Zentilin L, Floris I, Giacca M, Emanueli C (2012) Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 61:229–240

    Article  CAS  PubMed  Google Scholar 

  194. Prakoso D, De Blasio MJ, Qin C, Rosli S, Kiriazis H, Qian H, Du XJ, Weeks KL, Gregorevic P, McMullen JR, Ritchie RH (2017) Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clin Sci (Lond). 131(12):1345–1360. https://doi.org/10.1042/CS20170063

    Article  CAS  PubMed  Google Scholar 

  195. Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael M. Singh.

Ethics declarations

Conflict of interests

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.M., Waqar, T., Howarth, F.C. et al. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart. Heart Fail Rev 23, 37–54 (2018). https://doi.org/10.1007/s10741-017-9663-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9663-y

Keywords

Navigation