Skip to main content
Log in

Skeletal muscle bioenergetics in aging and heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Changes in mitochondrial capacity and quality play a critical role in skeletal and cardiac muscle dysfunction. In vivo measurements of mitochondrial capacity provide a clear link between physical activity and mitochondrial function in aging and heart failure, although the cause and effect relationship remains unclear. Age-related decline in mitochondrial quality leads to mitochondrial defects that affect redox, calcium, and energy-sensitive signaling by altering the cellular environment that can result in skeletal muscle dysfunction independent of reduced mitochondrial capacity. This reduced mitochondrial quality with age is also likely to sensitize skeletal muscle mitochondria to elevated angiotensin or beta-adrenergic signaling associated with heart failure. This synergy between aging and heart failure could further disrupt cell energy and redox homeostasis and contribute to exercise intolerance in this patient population. Therefore, the interaction between aging and heart failure, particularly with respect to mitochondrial dysfunction, should be a consideration when developing strategies to improve quality of life in heart failure patients. Given the central role of the mitochondria in skeletal and cardiac muscle dysfunction, mitochondrial quality may provide a common link for targeted interventions in these populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics C, Stroke Statistics S (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):948–954

    Article  PubMed  Google Scholar 

  2. Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci 56(5):B209–B217

    Article  CAS  PubMed  Google Scholar 

  3. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767

    Article  CAS  PubMed  Google Scholar 

  5. Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23(3):142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang P, Du W, Mancuso A, Wellen KE, Yang X (2013) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493(7434):689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Merritt TJ, Kuczynski C, Sezgin E, Zhu CT, Kumagai S, Eanes WF (2009) Quantifying interactions within the NADP(H) enzyme network in Drosophila melanogaster. Genetics 182(2):565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gameiro PA, Laviolette LA, Kelleher JK, Iliopoulos O, Stephanopoulos G (2013) Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J Biol Chem 288(18):12967–12977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD (2009) Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 54(20):1891–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed) 14:1197–1218

    Article  CAS  Google Scholar 

  12. Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33(6):755–764

    Article  CAS  PubMed  Google Scholar 

  13. Kramer PA, Duan J, Qian WJ, Marcinek DJ (2015) The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol 6:347

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94

    CAS  PubMed  Google Scholar 

  15. Okamoto K, Wang W, Rounds J, Chambers EA, Jacobs DO (2001) ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab 281(3):E479–E488

    CAS  PubMed  Google Scholar 

  16. Homsher E, Kean CJ (1978) Skeletal muscle energetics and metabolism. Annu Rev Physiol 40:93–131

    Article  CAS  PubMed  Google Scholar 

  17. Rall JA (1985) Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc Sport Sci Rev 13:33–74

    CAS  PubMed  Google Scholar 

  18. Blei ML, Conley KE, Kushmerick MJ (1993) Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol 465:203–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526(Pt 1):203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siegel MP, Kruse SE, Knowels G, Salmon A, Beyer R, Xie H, Van Remmen H, Smith SR, Marcinek DJ (2011) Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice. PLoS One 6(11):e26963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siegel MP, Wilbur T, Mathis M, Shankland EG, Trieu A, Harper ME, Marcinek DJ (2012) Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle. Mech Ageing Dev 133(9–10):620–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marcinek DJ, Schenkman KA, Ciesielski WA, Lee D, Conley KE (2005) Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J Physiol 569(Pt 2):467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801

    Article  PubMed  Google Scholar 

  24. Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, Lakatta EG (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112(5):674–682

    Article  PubMed  Google Scholar 

  25. Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW (2015) Exercise intolerance in heart failure with preserved ejection fraction: more than a heart problem. J Geriatr Cardiol 12(3):294–304

    PubMed  PubMed Central  Google Scholar 

  26. Molina AJ, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J, Haykowsky MJ, Brubaker PH, Kitzman DW (2016) Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail 4(8):636–645

    Article  PubMed  Google Scholar 

  27. Hoppeler H (1990) The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Physiol 80(2–3):137–145

    Article  CAS  PubMed  Google Scholar 

  28. Heath GW, Hagberg JM, Ehsani AA, Holloszy JO (1981) A physiological comparison of young and older endurance athletes. J Appl Physiol Respir Environ Exerc Physiol 51(3):634–640

    CAS  PubMed  Google Scholar 

  29. Rogers MA, Hagberg JM, Martin WH 3rd, Ehsani AA, Holloszy JO (1990) Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol (1985) 68(5):2195–2199

    CAS  Google Scholar 

  30. Zizola C, Schulze PC (2013) Metabolic and structural impairment of skeletal muscle in heart failure. Heart Fail Rev 18(5):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mancini DM, Ferraro N, Tuchler M, Chance B, Wilson JR (1988) Detection of abnormal calf muscle metabolism in patients with heart failure using phosphorus-31 nuclear magnetic resonance. Am J Cardiol 62(17):1234–1240

    Article  CAS  PubMed  Google Scholar 

  32. Dudley GA, Tullson PC, Terjung RL (1987) Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262(19):9109–9114

    CAS  PubMed  Google Scholar 

  33. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25(1–2):17–26

    Article  CAS  Google Scholar 

  34. Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 285(51):39646–39654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96(24):13807–13812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szalai G, Csordas G, Hantash BM, Thomas AP, Hajnoczky G (2000) Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem 275(20):15305–15313

    Article  CAS  PubMed  Google Scholar 

  38. Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ (2015) Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf) 213(1):107–144

    Article  CAS  Google Scholar 

  39. Campbell MD, Marcinek DJ (2016) Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochim Biophys Acta 1862(4):716–724

    Article  CAS  PubMed  Google Scholar 

  40. Lanza IR, Bhagra S, Nair KS, Port JD (2011) Measurement of human skeletal muscle oxidative capacity by 31P-MR spectroscopy: a cross-validation with in vitro measurements. J Magn Reson Imaging 34(5):1143–1150

    Article  PubMed  PubMed Central  Google Scholar 

  41. Percival JM, Siegel MP, Knowels G, Marcinek DJ (2013) Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition. Hum Mol Genet 22(1):153–167

    Article  CAS  PubMed  Google Scholar 

  42. Broskey NT, Boss A, Fares EJ, Greggio C, Gremion G, Schluter L, Hans D, Kreis R, Boesch C, Amati F (2015) Exercise efficiency relates with mitochondrial content and function in older adults. Physiol Rep 3(6)

  43. Coen PM, Jubrias SA, Distefano G, Amati F, Mackey DC, Glynn NW, Manini TM, Wohlgemuth SE, Leeuwenburgh C, Cummings SR, Newman AB, Ferrucci L, Toledo FG, Shankland E, Conley KE, Goodpaster BH (2013) Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci 68(4):447–455

    Article  PubMed  Google Scholar 

  44. Ryan TE, Erickson ML, Brizendine JT, Young HJ, McCully KK (2012) Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol (1985) 113(2):175–183

    Article  CAS  Google Scholar 

  45. Ryan TE, Southern WM, Brizendine JT, McCully KK (2013) Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy. Med Sci Sports Exerc 45(12):2346–2352

    Article  CAS  PubMed  Google Scholar 

  46. Ryan TE, Southern WM, Reynolds MA, McCully KK (2013) A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. J Appl Physiol (1985) 115(12):1757–1766

    Article  Google Scholar 

  47. De Blasi RA, Almenrader N, Aurisicchio P, Ferrari M (1997) Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy. J Biomed Opt 2(2):171–175

    Article  CAS  PubMed  Google Scholar 

  48. Van Beekvelt MCP, Colier WNJM, Wevers RA, Van Engelen BGM (2001) Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle, vol 90. vol 2

  49. Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA (2012) Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior. Appl Physiol Nutr Metab 37(1):88–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Amara CE, Shankland EG, Jubrias SA, Marcinek DJ, Kushmerick MJ, Conley KE (2007) Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci U S A 104(3):1057–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siegel MP, Kruse SE, Percival JM, Goh J, White CC, Hopkins HC, Kavanagh TJ, Szeto HH, Rabinovitch PS, Marcinek DJ (2013) Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 12(5):763–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Southern WM, Ryan TE, Kepple K, Murrow JR, Nilsson KR, McCully KK (2015) Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure. Physiol Rep 3(4)

  53. Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, Pacini EL, Shibata S, Palmer MD, Newcomer BR, Levine BD (2011) Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 13(12):1296–1304

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mancini DM, Henson D, LaManca J, Levine S (1994) Evidence of reduced respiratory muscle endurance in patients with heart failure. J Am Coll Cardiol 24(4):972–981

    Article  CAS  PubMed  Google Scholar 

  55. Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR (1986) Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation 73(6):1127–1136

    Article  CAS  PubMed  Google Scholar 

  56. Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80(5):1338–1346

    Article  CAS  PubMed  Google Scholar 

  57. Hart CR, Layec G, Trinity JD, Liu X, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS (2015) Evidence of preserved oxidative capacity and oxygen delivery in the plantar flexor muscles with age. J Gerontol A Biol Sci Med Sci 70(9):1067–1076

    Article  PubMed  Google Scholar 

  58. Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS (2015) Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. Am J Physiol Regul Integr Comp Physiol 309(4):R378–R388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lanza IR, Towse TF, Caldwell GE, Wigmore DM, Kent-Braun JA (2003) Effects of age on human muscle torque, velocity, and power in two muscle groups. J Appl Physiol (1985) 95(6):2361–2369

    Article  CAS  Google Scholar 

  60. Conley KE, Amara CE, Bajpeyi S, Costford SR, Murray K, Jubrias SA, Arakaki L, Marcinek DJ, Smith SR (2013) Higher mitochondrial respiration and uncoupling with reduced electron transport chain content in vivo in muscle of sedentary versus active subjects. J Clin Endocrinol Metab 98(1):129–136

    Article  CAS  PubMed  Google Scholar 

  61. Santanasto AJ, Glynn NW, Jubrias SA, Conley KE, Boudreau RM, Amati F, Mackey DC, Simonsick EM, Strotmeyer ES, Coen PM, Goodpaster BH, Newman AB (2015) Skeletal muscle mitochondrial function and fatigability in older adults. J Gerontol A Biol Sci Med Sci 70(11):1379–1385

    Article  PubMed  Google Scholar 

  62. Amara CE, Marcinek DJ, Shankland EG, Schenkman KA, Arakaki LS, Conley KE (2008) Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods 46(4):312–318

    Article  CAS  PubMed  Google Scholar 

  63. Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellsten Y (2014) Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med 73:166–173

    Article  CAS  PubMed  Google Scholar 

  64. Hutter E, Skovbro M, Lener B, Prats C, Rabol R, Dela F, Jansen-Durr P (2007) Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 6(2):245–256

    Article  PubMed  CAS  Google Scholar 

  65. Jackson MJ (2013) Interactions between reactive oxygen species generated by contractile activity and aging in skeletal muscle? Antioxid Redox Signal 19(8):804–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jackson MJ (2013) Monitoring of hydrogen peroxide and other reactive oxygen and nitrogen species generated by skeletal muscle. Methods Enzymol 528:279–300

    Article  CAS  PubMed  Google Scholar 

  67. Marcinek DJ, Siegel MP (2013) Targeting redox biology to reverse mitochondrial dysfunction. Aging (Albany NY) 5(8):588–589

    Article  CAS  Google Scholar 

  68. Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC Jr, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R (2013) Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 18(2):239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O'Rourke B, Van Eyk JE, Foster DB (2011) Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. Congest Heart Fail 17(6):269–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368

    Article  CAS  PubMed  Google Scholar 

  71. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106(7):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408

    Article  CAS  PubMed  Google Scholar 

  73. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12(8):360–365

    Article  CAS  PubMed  Google Scholar 

  75. Johnson ML, Robinson MM, Nair KS (2013) Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab 24(5):247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106(48):20405–20410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ji LL, Kang C (2015) Role of PGC-1alpha in sarcopenia: etiology and potential intervention—a mini-review. Gerontology 61(2):139–148

    Article  CAS  PubMed  Google Scholar 

  78. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7(1):2–12

    Article  CAS  PubMed  Google Scholar 

  79. Ghosh S, Lertwattanarak R, Lefort N, Molina-Carrion M, Joya-Galeana J, Bowen BP, Garduno-Garcia Jde J, Abdul-Ghani M, Richardson A, DeFronzo RA, Mandarino L, Van Remmen H, Musi N (2011) Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 60(8):2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Toth MJ, Miller MS, Ward KA, Ades PA (2012) Skeletal muscle mitochondrial density, gene expression, and enzyme activities in human heart failure: minimal effects of the disease and resistance training. J Appl Physiol (1985) 112(11):1864–1874

    Article  CAS  Google Scholar 

  81. Middlekauff HR, Verity MA, Horwich TB, Fonarow GC, Hamilton MA, Shieh P (2013) Intact skeletal muscle mitochondrial enzyme activity but diminished exercise capacity in advanced heart failure patients on optimal medical and device therapy. Clin Res Cardiol 102(8):547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zizola C, Kennel PJ, Akashi H, Ji R, Castillero E, George I, Homma S, Schulze PC (2015) Activation of PPARdelta signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 308(9):H1078–H1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schrepper A, Schwarzer M, Schope M, Amorim PA, Doenst T (2012) Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload—role of respiratory chain complex activity. J Mol Cell Cardiol 52(1):125–135

    Article  CAS  PubMed  Google Scholar 

  84. Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58(1):73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, Haykowsky M (2014) Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 306(9):H1364–H1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93(4):884S–8890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223

    Article  CAS  PubMed  Google Scholar 

  89. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kruse SE, Karunadharma PP, Basisty N, Johnson R, Beyer RP, MacCoss MJ, Rabinovitch PS, Marcinek DJ (2016) Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner. Aging Cell 15(1):89–99

    Article  CAS  PubMed  Google Scholar 

  91. Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287(4):H1813–H1820

    Article  CAS  PubMed  Google Scholar 

  92. Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52(1):103–110

    Article  CAS  PubMed  Google Scholar 

  93. Rosca MG, Hoppel CL (2010) Mitochondria in heart failure. Cardiovasc Res 88(1):40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hoppel CL, Tandler B, Fujioka H, Riva A (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41(10):1949–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Laitano O, Ahn B, Patel N, Coblentz PD, Smuder AJ, Yoo JK, Christou DD, Adhihetty PJ, Ferreira LF (2016) Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. J Appl Physiol (1985) 120(7):733–742

    Article  CAS  Google Scholar 

  96. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22(16):4103–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mailloux RJ, Adjeitey CN, Xuan JY, Harper ME (2012) Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J 26(1):363–375

    Article  CAS  PubMed  Google Scholar 

  98. Jackson MJ (2009) Redox regulation of adaptive responses in skeletal muscle to contractile activity. Free Radic Biol Med 47(9):1267–1275

    Article  CAS  PubMed  Google Scholar 

  99. Jackson MJ (2008) Redox regulation of skeletal muscle. IUBMB Life 60(8):497–501

    Article  CAS  PubMed  Google Scholar 

  100. Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73:2–9

    Article  CAS  PubMed  Google Scholar 

  101. Rosca MG, Hoppel CL (2013) Mitochondrial dysfunction in heart failure. Heart Fail Rev 18(5):607–622

    Article  CAS  PubMed  Google Scholar 

  102. Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology 148(7):3441–3448

    Article  CAS  PubMed  Google Scholar 

  103. Benson DW, Foley-Nelson T, Chance WT, Zhang FS, James JH, Fischer JE (1991) Decreased myofibrillar protein breakdown following treatment with clenbuterol. J Surg Res 50(1):1–5

    Article  CAS  PubMed  Google Scholar 

  104. Rosca MG, Tandler B, Hoppel CL (2013) Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 55:31–41

    Article  CAS  PubMed  Google Scholar 

  105. Rosca MG, Hoppel CL (2009) New aspects of impaired mitochondrial function in heart failure. J Bioenerg Biomembr 41(2):107–112

    Article  CAS  PubMed  Google Scholar 

  106. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101(47):16513–16518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rosca M, Minkler P, Hoppel CL (2011) Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim Biophys Acta 1807(11):1373–1382

    Article  CAS  PubMed  Google Scholar 

  108. Brink M, Wellen J, Delafontaine P (1996) Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest 97(11):2509–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang Y, Seto SW, Golledge J (2014) Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Fail Rev 19(2):187–198

    Article  CAS  PubMed  Google Scholar 

  110. Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H (2015) Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol 100(3):312–322

    Article  CAS  PubMed  Google Scholar 

  111. Takada S, Kinugawa S, Hirabayashi K, Suga T, Yokota T, Takahashi M, Fukushima A, Homma T, Ono T, Sobirin MA, Masaki Y, Mizushima W, Kadoguchi T, Okita K, Tsutsui H (2013) Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice. J Appl Physiol (1985) 114(7):844–857

    Article  CAS  Google Scholar 

  112. Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintron M, Chen T, Marcinek DJ, Dorn GW 2nd, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108(7):837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6):1141–1148

    Article  CAS  PubMed  Google Scholar 

  114. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90(4):E58–E65

    Article  PubMed  Google Scholar 

  115. Semprun-Prieto LC, Sukhanov S, Yoshida T, Rezk BM, Gonzalez-Villalobos RA, Vaughn C, Michael Tabony A, Delafontaine P (2011) Angiotensin II induced catabolic effect and muscle atrophy are redox dependent. Biochem Biophys Res Commun 409(2):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281(46):35137–35146

    Article  CAS  PubMed  Google Scholar 

  117. Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, Chen T, Gu H, Djukovic D, Raftery D, Beyer RP, MacCoss MJ, Rabinovitch PS (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13(3):529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14(2):196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rullman E, Andersson DC, Melin M, Reiken S, Mancini DM, Marks AR, Lund LH, Gustafsson T (2013) Modifications of skeletal muscle ryanodine receptor type 1 and exercise intolerance in heart failure. J Heart Lung Transplant 32(9):925–929

    Article  PubMed  PubMed Central  Google Scholar 

  120. Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR (2014) Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A 111(42):15250–15255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1(3):131–140

    Article  PubMed  Google Scholar 

  122. Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT (2003) Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38(8):863–876

    Article  CAS  PubMed  Google Scholar 

  123. Coleman R, Silbermann M, Gershon D, Reznick AZ (1987) Giant mitochondria in the myocardium of aging and endurance-trained mice. Gerontology 33(1):34–39

    Article  CAS  PubMed  Google Scholar 

  124. Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269(8):1996–2002

    Article  CAS  PubMed  Google Scholar 

  125. Dayan D, Abrahami I, Buchner A, Gorsky M, Chimovitz N (1988) Lipid pigment (lipofuscin) in human perioral muscles with aging. Exp Gerontol 23(2):97–102

    Article  CAS  PubMed  Google Scholar 

  126. Dayan D, David R, Buchner A (1979) Lipofuscin in human tongue muscle. J Oral Pathol 8(2):121–125

    Article  CAS  PubMed  Google Scholar 

  127. Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119(21):2789–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, Ngo CP, Prolla TA, Rabinovitch PS (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9(4):536–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was supported by awards from the National Institute on Aging of the National Institutes of Health AG001751 and AG000057 and a Breakthrough in Gerontology Award from the American Federation for Aging Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Marcinek.

Ethics declarations

Conflict of interest

David Marcinek serves as a paid consultant to Stealth BioTherapeutics. Stealth is developing the compound elamipretide (SS-31) for clinical use. Sophia Liu has no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S.Z., Marcinek, D.J. Skeletal muscle bioenergetics in aging and heart failure. Heart Fail Rev 22, 167–178 (2017). https://doi.org/10.1007/s10741-016-9586-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9586-z

Keywords

Navigation