Skip to main content

Advertisement

Log in

Phosphodiesterase inhibition in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Drugs that inhibit cyclic nucleotide phosphodiesterase activity act to increase intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) content. In total, 11 families of these enzymes—which differ with respect to affinity for cAMP and cGMP, cellular expression, intracellular localization, and mechanisms of regulation—have been identified. Inhibitors of enzymes in the PDE3 family of cyclic nucleotide phosphodiesterases raise intracellular cAMP content in cardiac and vascular smooth muscle, with inotropic and, to a lesser extent, vasodilatory actions. These drugs have been used for many years in the treatment of patients with heart failure, but their long-term use has generally been shown to increase mortality through mechanisms that remain unclear. More recently, inhibitors of PDE5 cyclic nucleotide phosphodiesterases have been used as cGMP-raising agents in vascular smooth muscle. With respect to cardiovascular disease, there is evidence that these drugs are more efficacious in the pulmonary than in the systemic vasculature, for which reason they are used principally in patients with pulmonary hypertension. Effects attributable to inhibition of myocardial PDE5 activity are less well characterized. New information indicating that enzymes from the PDE1 family of cyclic nucleotide phosphodiesterases constitute the majority of cAMP- and cGMP-hydrolytic activity in human myocardium raises questions as to their role in regulating these signaling pathways in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimizu K et al (2002) Potentiation of slow component of delayed rectifier K(+) current by cGMP via two distinct mechanisms: inhibition of phosphodiesterase 3 and activation of protein kinase G. Br J Pharmacol 137(1):127–137. doi:10.1038/sj.bjp.0704843

    Article  PubMed  CAS  Google Scholar 

  2. Frace AM et al (1993) Rate-limiting steps in the beta-adrenergic stimulation of cardiac calcium current. J Gen Physiol 101(3):337–353. doi:10.1085/jgp.101.3.337

    Article  PubMed  CAS  Google Scholar 

  3. Vandecasteele G et al (2001) Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes. J Physiol 533(Pt 2):329–340. doi:10.1111/j.1469-7793.2001.0329a.x

    Article  PubMed  CAS  Google Scholar 

  4. Nagendran J et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116(3):238–248. doi:10.1161/CIRCULATIONAHA.106.655266

    Article  PubMed  CAS  Google Scholar 

  5. Fung E, Fiscus RR (2003) Adrenomedullin induces direct (endothelium-independent) vasorelaxations and cyclic adenosine monophosphate elevations that are synergistically enhanced by brain natriuretic peptide in isolated rings of rat thoracic aorta. J Cardiovasc Pharmacol 41(6):849–855. doi:10.1097/00005344-200306000-00004

    Article  PubMed  CAS  Google Scholar 

  6. Aizawa T et al (2003) Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res 93(5):406–413. doi:10.1161/01.RES.0000091074.33584.F0

    Article  PubMed  CAS  Google Scholar 

  7. Osinski MT, Rauch BH, Schror K (2001) Antimitogenic actions of organic nitrates are potentiated by sildenafil and mediated via activation of protein kinase A. Mol Pharmacol 59(5):1044–1050

    PubMed  CAS  Google Scholar 

  8. Keravis T, Komas N, Lugnier C (2000) Cyclic nucleotide hydrolysis in bovine aortic endothelial cells in culture: differential regulation in cobblestone and spindle phenotypes. J Vasc Res 37(4):235–249. doi:10.1159/000025738

    Article  PubMed  CAS  Google Scholar 

  9. Smith CJ et al (1996) Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 78(1):58–64

    PubMed  CAS  Google Scholar 

  10. Steinberg SF et al (1995) Characteristics of the beta-adrenergic receptor complex in the epicardial border zone of the 5-day infarcted canine heart. Circulation 91(11):2824–2833

    PubMed  CAS  Google Scholar 

  11. Mery PF et al (1993) Nitric oxide regulates cardiac Ca2 + current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 268(35):26286–26295

    PubMed  CAS  Google Scholar 

  12. Rivet-Bastide M et al (1997) cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. J Clin Invest 99(11):2710–2718. doi:10.1172/JCI119460

    Article  PubMed  CAS  Google Scholar 

  13. Mongillo M et al (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98(2):226–234. doi:10.1161/01.RES.0000200178.34179.93

    Article  PubMed  CAS  Google Scholar 

  14. Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255(11):5113–5119

    PubMed  CAS  Google Scholar 

  15. Hayes JS et al (1982) Evidence for selective regulation of the phosphorylation of myocyte proteins by isoproterenol and prostaglandin E1. Biochim Biophys Acta 714(1):136–142

    PubMed  CAS  Google Scholar 

  16. Steinberg SF (1999) The molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes. Circ Res 85(11):1101–1111

    PubMed  CAS  Google Scholar 

  17. Xiao RP, Lakatta EG (1993) Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+ , and Ca2+ current in single rat ventricular cells. Circ Res 73(2):286–300

    PubMed  CAS  Google Scholar 

  18. Xiao RP et al (1994) Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2 + dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 269(29):19151–19156

    PubMed  CAS  Google Scholar 

  19. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715. doi:10.1126/science.1069982

    Article  PubMed  CAS  Google Scholar 

  20. Mongillo M et al (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95(1):67–75. doi:10.1161/01.RES.0000134629.84732.11

    Article  PubMed  CAS  Google Scholar 

  21. Rochais F et al (2006) A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res 98(8):1081–1088. doi:10.1161/01.RES.0000218493.09370.8e

    Article  PubMed  CAS  Google Scholar 

  22. Nikolaev VO et al (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99(10):1084–1091. doi:10.1161/01.RES.0000250046.69918.d5

    Article  PubMed  CAS  Google Scholar 

  23. Leroy J et al (2008) Spatiotemporal dynamics of {beta}-adrenergic cAMP signals and L-Type Ca2 + channel regulation in adult rat ventricular myocytes. Role of phosphodiesterases. Circ Res 102:1091–1100

    Article  PubMed  CAS  Google Scholar 

  24. Bode DC, Kanter JR, Brunton LL (1991) Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circ Res 68(4):1070–1079

    PubMed  CAS  Google Scholar 

  25. Vandeput F et al (2007) Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. J Biol Chem 282(45):32749–32757. doi:10.1074/jbc.M703173200

    Article  PubMed  CAS  Google Scholar 

  26. Schermuly RT et al (2007) Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: target for reverse-remodeling therapy. Circulation 115(17):2331–2339. doi:10.1161/CIRCULATIONAHA.106.676809

    Article  PubMed  CAS  Google Scholar 

  27. Ahmad F et al (2007) Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochem J 404(2):257–268. doi:10.1042/BJ20060960

    Article  PubMed  CAS  Google Scholar 

  28. Phillips PG et al (2005) cAMP phosphodiesterase inhibitors potentiate effects of prostacyclin analogs in hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 288(1):L103–L115. doi:10.1152/ajplung.00095.2004

    Article  PubMed  CAS  Google Scholar 

  29. Choi YH et al (2001) Identification of a novel isoform of the cyclic-nucleotide phosphodiesterase PDE3A expressed in vascular smooth-muscle myocytes. Biochem J 353(Pt 1):41–50. doi:10.1042/0264-6021:3530041

    PubMed  CAS  Google Scholar 

  30. Wechsler J et al (2002) Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem 277(41):38072–38078. doi:10.1074/jbc.M203647200

    Article  PubMed  CAS  Google Scholar 

  31. Hambleton R et al (2005) Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium. J Biol Chem 280(47):39168–39174. doi:10.1074/jbc.M506760200

    Article  PubMed  CAS  Google Scholar 

  32. Ding B et al (2005) Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation 111(19):2469–2476. doi:10.1161/01.CIR.0000165128.39715.87

    Article  PubMed  CAS  Google Scholar 

  33. von der Leyen H et al (1991) Mechanism underlying the reduced positive inotropic effects of the phosphodiesterase III inhibitors pimobendan, adibendan and saterinone in failing as compared to nonfailing human cardiac muscle preparations. Naunyn Schmiedebergs Arch Pharmacol 344(1):90–100

    Article  PubMed  Google Scholar 

  34. Movsesian MA et al (1991) Sarcoplasmic reticulum-associated cyclic adenosine 5′-monophosphate phosphodiesterase activity in normal and failing human hearts. J Clin Invest 88(1):15–19. doi:10.1172/JCI115272

    Article  PubMed  CAS  Google Scholar 

  35. Wallis RM et al (1999) Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 83(5A):3C–12C. doi:10.1016/S0002-9149(99)00042-9

    Article  PubMed  CAS  Google Scholar 

  36. Cremers B et al (2003) Effects of sildenafil (viagra) on human myocardial contractility, in vitro arrhythmias, and tension of internal mammaria arteries and saphenous veins. J Cardiovasc Pharmacol 41(5):734–743. doi:10.1097/00005344-200305000-00010

    Article  PubMed  CAS  Google Scholar 

  37. Beaulieu P et al (1997) Positive chronotropic and inotropic effects of C-type natriuretic peptide in dogs. Am J Physiol 273(4 Pt 2):H1933–H1940

    PubMed  CAS  Google Scholar 

  38. Hirose M et al (1998) C-type natriuretic peptide increases myocardial contractility and sinus rate mediated by guanylyl cyclase-linked natriuretic peptide receptors in isolated, blood-perfused dog heart preparations. J Pharmacol Exp Ther 286(1):70–76

    PubMed  CAS  Google Scholar 

  39. Wollert KC et al (2003) Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. Br J Pharmacol 140(7):1227–1236. doi:10.1038/sj.bjp.0705567

    Article  PubMed  CAS  Google Scholar 

  40. Pierkes M et al (2002) Increased effects of C-type natriuretic peptide on cardiac ventricular contractility and relaxation in guanylyl cyclase A-deficient mice. Cardiovasc Res 53(4):852–861. doi:10.1016/S0008-6363(01)00543-0

    Article  PubMed  CAS  Google Scholar 

  41. Vila-Petroff MG et al (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84(9):1020–1031

    PubMed  CAS  Google Scholar 

  42. Wegener JW et al (2002) cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res 90(1):18–20. doi:10.1161/hh0102.103222

    Article  PubMed  CAS  Google Scholar 

  43. Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540(Pt 2):457–467. doi:10.1113/jphysiol.2001.014126

    Article  PubMed  CAS  Google Scholar 

  44. Borlaug BA et al (2005) Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation 112(17):2642–2649. doi:10.1161/CIRCULATIONAHA.105.540500

    Article  PubMed  CAS  Google Scholar 

  45. Danielsen W et al (1989) Basal and isoprenaline-stimulated cAMP content in failing versus nonfailing human cardiac preparations. J Cardiovasc Pharmacol 14(1):171–173. doi:10.1097/00005344-198907000-00026

    Article  PubMed  CAS  Google Scholar 

  46. Schwinger RH et al (1999) Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31(3):479–491. doi:10.1006/jmcc.1998.0897

    Article  PubMed  Google Scholar 

  47. Feldman MD et al (1987) Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75(2):331–339

    PubMed  CAS  Google Scholar 

  48. Gilbert EM et al (1995) Pharmacologic and hemodynamic effects of combined beta-agonist stimulation and phosphodiesterase inhibition in the failing human heart. Chest 108(6):1524–1532. doi:10.1378/chest.108.6.1524

    Article  PubMed  CAS  Google Scholar 

  49. Lowes BD et al (2005) Rationale and design of the enoximone clinical trials program. J Card Fail 11(9):659–669. doi:10.1016/j.cardfail.2005.10.013

    Article  PubMed  CAS  Google Scholar 

  50. Baim DS et al (1983) Evaluation of a new bipyridine inotropic agent—milrinone—in patients with severe congestive heart failure. N Engl J Med 309(13):748–756

    PubMed  CAS  Google Scholar 

  51. Benotti JR et al (1978) Hemodynamic assessment of amrinone. A new inotropic agent. N Engl J Med 299(25):1373–1377

    Article  PubMed  CAS  Google Scholar 

  52. Jaski BE et al (1985) Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose-response relationships and comparison to nitroprusside. J Clin Invest 75(2):643–649. doi:10.1172/JCI111742

    Article  PubMed  CAS  Google Scholar 

  53. Sinoway LS et al (1983) Long-term therapy with a new cardiotonic agent, WIN 47203: drug-dependent improvement in cardiac performance and progression of the underlying disease. J Am Coll Cardiol 2(2):327–331

    PubMed  CAS  Google Scholar 

  54. Anderson JL (1991) Hemodynamic and clinical benefits with intravenous milrinone in severe chronic heart failure: results of a multicenter study in the United States. Am Heart J 121(6 Pt 2):1956–1964. doi:10.1016/0002-8703(91)90832-3

    Article  PubMed  CAS  Google Scholar 

  55. Shipley JB et al (1996) Milrinone: basic and clinical pharmacology and acute and chronic management. Am J Med Sci 311(6):286–291. doi:10.1097/00000441-199606000-00011

    Article  PubMed  CAS  Google Scholar 

  56. Grose R et al (1986) Systemic and coronary effects of intravenous milrinone and dobutamine in congestive heart failure. J Am Coll Cardiol 7(5):1107–1113

    PubMed  CAS  Google Scholar 

  57. Cuffe MS et al (2002) Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. J Am Med Assoc 287(12):1541–1547. doi:10.1001/jama.287.12.1541

    Article  CAS  Google Scholar 

  58. Uretsky BF et al (1990) Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure. Lack of benefit compared with placebo. Enoximone Multicenter Trial Group. Circulation 82(3):774–780

    PubMed  CAS  Google Scholar 

  59. Lowes BD et al (2000) Low-dose enoximone improves exercise capacity in chronic heart failure. Enoximone Study Group. J Am Coll Cardiol 36(2):501–508. doi:10.1016/S0735-1097(00)00759-2

    Article  PubMed  CAS  Google Scholar 

  60. Packer M et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 325(21):1468–1475

    PubMed  CAS  Google Scholar 

  61. Feldman AM et al (1993) Effects of vesnarinone on morbidity and mortality in patients with heart failure. Vesnarinone Study Group. N Engl J Med 329(3):149–155. doi:10.1056/NEJM199307153290301

    Article  PubMed  CAS  Google Scholar 

  62. Cohn JN et al (1998) A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone Trial Investigators. N Engl J Med 339(25):1810–1816. doi:10.1056/NEJM199812173392503

    Article  PubMed  CAS  Google Scholar 

  63. Abraham WT et al (2005) In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol 46(1):57–64. doi:10.1016/j.jacc.2005.03.051

    Article  PubMed  Google Scholar 

  64. Tang WH, Francis GS (2005) The year in heart failure. J Am Coll Cardiol 46(11):2125–2133

    Article  PubMed  Google Scholar 

  65. Feldman AM et al (2007) Low-dose oral enoximone enhances the ability to wean patients with ultra-advanced heart failure from intravenous inotropic support: results of the oral enoximone in intravenous inotrope-dependent subjects trial. Am Heart J 154(5):861–869. doi:10.1016/j.ahj.2007.06.044

    Article  PubMed  CAS  Google Scholar 

  66. Ding B et al (2005) A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proc Natl Acad Sci USA 102(41):14771–14776

    Article  PubMed  CAS  Google Scholar 

  67. Montorsi F et al (2003) Pharmacological management of erectile dysfunction. BJU Int 91(5):446–454. doi:10.1046/j.1464-410X.2003.04093.x

    Article  PubMed  CAS  Google Scholar 

  68. Bocchi EA et al (2002) Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation 106(9):1097–1103. doi:10.1161/01.CIR.0000027149.83473.B6

    Article  PubMed  Google Scholar 

  69. Guazzi M et al (2007) Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol 50(22):2136–2144. doi:10.1016/j.jacc.2007.07.078

    Article  PubMed  CAS  Google Scholar 

  70. Ghofrani HA et al (2004) Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J Am Coll Cardiol 44(7):1488–1496

    PubMed  CAS  Google Scholar 

  71. Alaeddini J et al (2004) Efficacy and safety of sildenafil in the evaluation of pulmonary hypertension in severe heart failure. Am J Cardiol 94(11):1475–1477. doi:10.1016/j.amjcard.2004.07.157

    Article  PubMed  CAS  Google Scholar 

  72. Trachte AL et al (2005) Oral sildenafil reduces pulmonary hypertension after cardiac surgery. Ann Thorac Surg 79(1): 194–197, discussion 194–197. doi:10.1016/j.athoracsur.2004.06.086

    Google Scholar 

  73. Michelakis E et al (2002) Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation 105(20):2398–2403. doi:10.1161/01.CIR.0000016641.12984.DC

    Article  PubMed  CAS  Google Scholar 

  74. Lepore JJ et al (2005) Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 127(5):1647–1653. doi:10.1378/chest.127.5.1647

    Article  PubMed  CAS  Google Scholar 

  75. Cheitlin MD et al (1999) ACC/AHA expert consensus document. Use of sildenafil (Viagra) in patients with cardiovascular disease. American College of Cardiology/American Heart Association. J Am Coll Cardiol 33(1):273–282. doi:10.1016/S0735-1097(98)00656-1

    Article  PubMed  CAS  Google Scholar 

  76. Michelakis ED et al (2003) Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation 108(17):2066–2069. doi:10.1161/01.CIR.0000099502.17776.C2

    Article  PubMed  CAS  Google Scholar 

  77. Wilkins MR et al (2005) Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) study. Am J Respir Crit Care Med 171(11):1292–1297. doi:10.1164/rccm.200410-1411OC

    Article  PubMed  Google Scholar 

  78. Galie N et al (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353(20):2148–2157. doi:10.1056/NEJMoa050010

    Article  PubMed  CAS  Google Scholar 

  79. Guazzi M et al (2004) The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J Am Coll Cardiol 44(12):2339–2348. doi:10.1016/j.jacc.2004.09.041

    Article  PubMed  CAS  Google Scholar 

  80. Lewis GD et al (2007) Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 115(1):59–66. doi:10.1161/CIRCULATIONAHA.106.626226

    Article  PubMed  CAS  Google Scholar 

  81. Lewis GD et al (2007) Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116(14):1555–1562. doi:10.1161/CIRCULATIONAHA.107.716373

    Article  PubMed  CAS  Google Scholar 

  82. Mahmud A, Hennessy M, Feely J (2001) Effect of sildenafil on blood pressure and arterial wave reflection in treated hypertensive men. J Hum Hypertens 15(10):707–713. doi:10.1038/sj.jhh.1001244

    Article  PubMed  CAS  Google Scholar 

  83. Vlachopoulos C, Hirata K, O’Rourke MF (2003) Effect of sildenafil on arterial stiffness and wave reflection. Vasc Med 8(4):243–248. doi:10.1191/1358863x03vm509ra

    Article  PubMed  Google Scholar 

  84. Hohl CM, Li QA (1991) Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2 + transients. Circ Res 69(5):1369–1379

    PubMed  CAS  Google Scholar 

  85. Cohn JN et al (1986) Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 314(24):1547–1552

    PubMed  CAS  Google Scholar 

  86. Cohn JN et al (1991) A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 325(5):303–310

    PubMed  CAS  Google Scholar 

  87. Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345(23):1667–1675. doi:10.1056/NEJMoa010713

    Article  PubMed  CAS  Google Scholar 

  88. Wagner RS et al (1997) Phosphodiesterase inhibition improves agonist-induced relaxation of hypertensive pulmonary arteries. J Pharmacol Exp Ther 282(3):1650–1657

    PubMed  CAS  Google Scholar 

  89. Epstein PM et al (1987) Ontogenetic changes in adenylate cyclase, cyclic AMP phosphodiesterase and calmodulin in chick ventricular myocardium. Biochem J 243(2):525–531

    PubMed  CAS  Google Scholar 

  90. Fiedler B et al (2002) Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci USA 99(17):11363–11368. doi:10.1073/pnas.162100799

    Article  PubMed  CAS  Google Scholar 

  91. Hassan MA, Ketat AF (2005) Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol 5(1):10. doi:10.1186/1471-2210-5-10

    Article  PubMed  CAS  Google Scholar 

  92. Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98(5):2703–2706. doi:10.1073/pnas.051625598

    Article  PubMed  CAS  Google Scholar 

  93. Knowles JW et al (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107(8):975–984. doi:10.1172/JCI11273

    Article  PubMed  CAS  Google Scholar 

  94. Takimoto E et al (2005) cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96(1):100–109. doi:10.1161/01.RES.0000152262.22968.72

    Article  PubMed  CAS  Google Scholar 

  95. Wollert KC et al (2002) Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39(1):87–92. doi:10.1161/hy1201.097292

    Article  PubMed  CAS  Google Scholar 

  96. Zahabi A et al (2003) Expression of constitutively active guanylate cyclase in cardiomyocytes inhibits the hypertrophic effects of isoproterenol and aortic constriction on mouse hearts. J Biol Chem 278(48):47694–47699. doi:10.1074/jbc.M309661200

    Article  PubMed  CAS  Google Scholar 

  97. Das A et al (2004) Protein kinase C plays an essential role in sildenafil-induced cardioprotection in rabbits. Am J Physiol Heart Circ Physiol 286(4):H1455–H1460. doi:10.1152/ajpheart.01040.2003

    Article  PubMed  CAS  Google Scholar 

  98. Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280(13):12944–12955. doi:10.1074/jbc.M404706200

    Article  PubMed  CAS  Google Scholar 

  99. Salloum F et al (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92(6):595–597. doi:10.1161/01.RES.0000066853.09821.98

    Article  PubMed  CAS  Google Scholar 

  100. Schermuly RT et al (2005) Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors. Respir Res 6:76. doi:10.1186/1465-9921-6-76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Movsesian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movsesian, M., Stehlik, J., Vandeput, F. et al. Phosphodiesterase inhibition in heart failure. Heart Fail Rev 14, 255–263 (2009). https://doi.org/10.1007/s10741-008-9130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-008-9130-x

Keywords

Navigation