Skip to main content
Log in

The significance of brain aminopeptidases in the regulation of the actions of angiotensin peptides in the brain

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

From the outset, the concept of a brain renin-angiotensin system (RAS) has been controversial and this controversy continues to this day. In addition to the unresolved questions as to the means by which, and location(s) where brain Ang II is synthesized, and the uncertainties regarding the functionality of the different subtypes of Ang II receptors in the brain, a new controversy has arisen with respect to the identity of the angiotensin peptide(s) that activate brain AT1 receptors. While it has been known for some time that Ang III can activate Ang II receptors with equivalent or near-equivalent efficacy to Ang II, it has been proposed that in the brain, only Ang III is active. This proposal, which we have named “The Angiotensin III Hypothesis” states that Ang II must be converted to Ang III in order to activate brain AT1 receptors. This review examines several aspects of the controversies regarding the brain RAS with a special focus on brain aminopeptidases, studies that either support or refute The Angiotensin III Hypothesis, and the implications of The Angiotensin III Hypothesis for the activity of the brain RAS. It also addresses the need for further research that can test The Angiotensin III Hypothesis and definitively identify the angiotensin peptide(s) that activate brain AT1 receptor-mediated effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Harding JW, Yoshida MS, Dilts RP, Woods TM, Wright JW (1986) Cerebroventricular and intravascular metabolism of [125I]angiotensins in rat. J Neurochem 46:1292–1297

    PubMed  CAS  Google Scholar 

  2. Ahmad S, Ward PE (1990) Role of aminopeptidase activity in the regulation of the pressor activity of circulating angiotensins. J Pharmacol Exp Ther 252:643–650

    PubMed  CAS  Google Scholar 

  3. Karamyan V, Speth R (2007) Enzymatic pathways of the brain renin-angiotensin system: unsolved problems and continuing challenges. Regul Pept 143:15–27

    PubMed  CAS  Google Scholar 

  4. von Bohlen O, Halbach U (2005) The renin-angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci 6:355–371

    Google Scholar 

  5. Wright JW, Harding JW, (1995) Brain angiotensin receptor subtypes AT(1), AT(2), and AT(4) and their functions. Regul Pept 59:269–295

    PubMed  CAS  Google Scholar 

  6. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin regulated aminopeptidase. J Biol Chem 276:48623–48626

    PubMed  CAS  Google Scholar 

  7. Miller-Wing AV, Hanesworth JM, Sardinia MF, Hall KL, Wright JW, Speth RC, Grove KL, Harding JW (1993) Central angiotensin IV binding sites: distribution and specificity in guinea pig brain. J Pharmacol Exp Ther 266:1718–1726

    PubMed  CAS  Google Scholar 

  8. Tsujimoto M, Hattori A (2005) The oxytocinase subfamily of M1 aminopeptidases. Biochim Biophys Acta 1751:9–18

    PubMed  CAS  Google Scholar 

  9. Gibson RE, Thorpe HH, Cartwright ME, Frank JD, Schorn TW, Bunting PB, Siegl PK (1991) Angiotensin II receptor subtypes in renal cortex of rats and rhesus monkeys. Am J Physiol 261:F512–F518

    PubMed  CAS  Google Scholar 

  10. Gibson AM, Biggins JA, Lauffart B, Mantle D, McDermott JR (1991) Human brain leucyl aminopeptidase: isolation, characterization and specificity against some neuropeptides. Neuropeptides 19:163–168

    PubMed  CAS  Google Scholar 

  11. Kugler P (1982) Aminopeptidase A is angiotensinase A. II. Biochemical studies on the rat kidney homogenate. Histochemistry 74:247–261

    PubMed  CAS  Google Scholar 

  12. Hayashi M, Oshima K (1980) Isolation and characterization of aminotripeptidase from monkey brain. J Biochem (Tokyo) 87:1403–1411

    CAS  Google Scholar 

  13. Gallegos ME, Zannatha MM, Osornio EG, Sanchez AS, Posadas del rio FA (1999) The activities of six exo-and endopeptidases in the substantia nigra, neostriatum, and cortex of the rat brain. Neurochem Res 24:1557–1561

    PubMed  CAS  Google Scholar 

  14. Turzynski A, Mentlein R (1990) Prolyl aminopeptidase from rat brain and kidney. Action on peptides and identification as leucyl aminopeptidase. Eur J Biochem 190:509–515

    PubMed  CAS  Google Scholar 

  15. Gainer H, Russell JT, Loh YP (1984) An aminopeptidase activity in bovine pituitary secretory vesicles that cleaves the N-terminal arginine from beta-lipotropin60–65. FEBS Lett 175:135–139

    PubMed  CAS  Google Scholar 

  16. Nagatsu I, Gillespie L, Folk JE, Glenner GG (1965) Serum aminopeptidases, “angiotensinase,” and hypertension. I. Degradation of angiotensin II by human serum. Biochem Pharmacol 14:721–728

    PubMed  CAS  Google Scholar 

  17. Gilmartin L, O’Cuinn G (1999) Dipeptidyl aminopeptidase IV and aminopeptidase P, two proline specific enzymes from the cytoplasm of guinea-pig brain: their role in metabolism of peptides containing consecutive prolines. Neurosci Res 34:1–11

    PubMed  CAS  Google Scholar 

  18. Harbeck HT, Mentlein R (1991) Aminopeptidase P from rat brain. Purification and action on bioactive peptides. Eur J Biochem 198:451–458

    PubMed  CAS  Google Scholar 

  19. Gil J, Larrinaga G, Meana JJ, Rodriguez-Puertas R, Irazusta J, Casis L (2001) Regional and subcellular distribution of soluble aminopeptidase in the human and the rat brain: a comparative study. Neuropeptides 35:276–284

    PubMed  CAS  Google Scholar 

  20. Mantle D, Lauffart B, Perry EK, Perry RH (1989) Comparison of major cortical aminopeptidase activity in normal brain and brain from patients with Alzheimer’s disease. J Neurol Sci 89:227–234

    PubMed  CAS  Google Scholar 

  21. Sharma KK Ortwerth BJ (1987) Purification and characterization of an aminopeptidase from bovine cornea. Exp Eye Res 45:117–126

    Google Scholar 

  22. Gee NS, Kenny AJ (1985) Proteins of the kidney microvillar membrane. The 130 kDa protein in pig kidney, recognized by monoclonal antibody GK5C1, is an ectoenzyme with aminopeptidase activity. Biochem J 230:753–764

    PubMed  CAS  Google Scholar 

  23. Yoshida A, Lin M (1972) NH 2 -terminal formylmethionine- and NH 2 -terminal methionine-cleaving enzymes in rabbits. J Biol Chem 247:952–957

    PubMed  CAS  Google Scholar 

  24. Sim MK, Choo MHH, Qiu XS (1994) Degradation of angiotensin I to [des-Asp(1)]angiotensin I by a novel aminopeptidase in the rat hypothalamus. Biochem Pharmacol 48:1043–1046

    PubMed  CAS  Google Scholar 

  25. Sim MK, Lim BC (1997) Determination of aminopeptidase X activity in tissues of normo- and hypertensive rats by capillary electrophoresis. J Chromatogr B Biomed Sci Appl 697:259–262

    PubMed  CAS  Google Scholar 

  26. Wilk S, Wilk E, Magnusson RP (1998) Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem 273:15961–15970

    PubMed  CAS  Google Scholar 

  27. Lee CM, Snyder SH (1982) Dipeptidyl-aminopeptidase III of rat brain. Selective affinity for enkephalin and angiotensin. J Biol Chem 257:12043–12050

    PubMed  CAS  Google Scholar 

  28. Erdos EG, Skidgel RA (1990) Renal metabolism of angiotensin I and II. Kidney Int Suppl 30:S24–S27

    PubMed  CAS  Google Scholar 

  29. Alba F, Arenas JC, Lopez MA (1995) Properties of rat brain dipeptidyl aminopeptidases in the presence of detergents. Peptides 16:325–329

    PubMed  CAS  Google Scholar 

  30. Mentlein R, Struckhoff G (1989) Purification of two dipeptidylaminopeptidases from rat brain and their action on proline-containing neuropeptides. J Neurochem 52:1284–1293

    PubMed  CAS  Google Scholar 

  31. Smyth M, Ocuinn G (1994) Dipeptidyl aminopeptidase III of guinea-pig brain: specificity for short oligopeptide sequences. J Neurochem 63:1439–1445

    Article  PubMed  CAS  Google Scholar 

  32. Koike M, Shibata M, Ohsawa Y, Kametaka S, Waguri S, Kominami E, Uchiyama Y (2002) The expression of tripeptidyl peptidase I in various tissues of rats and mice. Arch Histol Cytol 65:219–232

    PubMed  CAS  Google Scholar 

  33. Du PG, Kato S, Li YH, Maeda T, Yamane T, Yamamoto S, Fujiwara M, Yamamoto Y, Nishi K, Ohkubo I (2001) Rat tripeptidyl peptidase I: molecular cloning, functional expression, tissue localization and enzymatic characterization. Biol Chem 382:1715–1725

    PubMed  CAS  Google Scholar 

  34. Warburton MJ, Bernardini F (2001) The specificity of lysosomal tripeptidyl peptidase-I determined by its action on angiotensin-II analogues. FEBS Lett 500:145–148

    PubMed  CAS  Google Scholar 

  35. Warburton MJ, Bernardini F (2002) Tripeptidyl peptidase-I is essential for the degradation of sulphated cholecystokinin-8 (CCK-8S) by mouse brain lysosomes. Neurosci Lett 331:99–102

    PubMed  CAS  Google Scholar 

  36. Tomkinson B, Nyberg F (1995) Distribution of tripeptidyl-peptidase II in the central nervous system of rat. Neurochem Res 20:1443–1447

    PubMed  CAS  Google Scholar 

  37. Wilson C, Gibson AM, McDermott JR (1993) Purification and characterization of tripeptidylpeptidase-II from post-mortem human brain. Neurochem Res 18:743–749

    PubMed  CAS  Google Scholar 

  38. Orning L, Gierse JK, Fitzpatrick FA (1994) The bifunctional enzyme leukotriene-A4 hydrolase is an arginine aminopeptidase of high efficiency and specificity. J Biol Chem 269:11269–11273

    PubMed  CAS  Google Scholar 

  39. Diaz-Perales A, Quesada V, Sanchez LM, Ugalde AP, Suarez MF, Fueyo A, Lopez-Otin C (2005) Identification of human aminopeptidase O, a novel metalloprotease with structural similarity to aminopeptidase B and leukotriene A4 hydrolase. J Biol Chem 280:14310–14317

    PubMed  CAS  Google Scholar 

  40. Axton R, Wallis JA, Taylor H, Hanks M, Forrester LM (2007) Aminopeptidase O contains a functional nucleolar localization signal and is implicated in vascular biology. J Cell Biochem Sep 5 [Epub ahead of print]

  41. Maruyama M, Hattori A, Goto Y, Ueda M, Maeda M, Fujiwara H, Tsujimoto M (2007) Laeverin/aminopeptidase Q, a novel bestatin-sensitive leucine aminopeptidase belonging to the M1 family of aminopeptidases. J Biol Chem 282:20088–20096

    PubMed  CAS  Google Scholar 

  42. Schomburg L, Kollmus H, Friedrichsen S, Bauer K (2000) Molecular characterization of a puromycin-insensitive leucyl-specific aminopeptidase, PILS-AP. Eur J Biochem 267:3198–3207

    PubMed  CAS  Google Scholar 

  43. Taylor WL Dixon JE (1978) Characterization of a pyroglutamate aminopeptidase from rat serum that degrades thyrotropin-releasing hormone. J Biol Chem 253:6934–6940

    PubMed  CAS  Google Scholar 

  44. Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR (1988) Astrocytes synthesize angiotensinogen in brain. Science 242:1444–1446

    PubMed  CAS  Google Scholar 

  45. Thomas WG, Greenland KJ, Shinkel TA, Sernia C (1992) Angiotensinogen is secreted by pure rat neuronal cell cultures. Brain Res 588:191–200

    PubMed  CAS  Google Scholar 

  46. Imboden H, Harding JW, Hilgenfeldt U, Celio MR, Felix D (1987) Localization of angiotensinogen in multiple cell types of rat brain. Brain Res 410:74–77

    PubMed  CAS  Google Scholar 

  47. Yang G, Gray TS, Sigmund CD, Cassell MD, (1999) The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res 817:123–131

    PubMed  CAS  Google Scholar 

  48. Deschepper CF, Bouhnik J, Ganong WF (1986) Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Res 374:195–198

    PubMed  CAS  Google Scholar 

  49. Murakami E, Eggena P, Barrett JD, Sambhi MP (1984) Heterogeneity of renin substrate released from hepatocytes and in brain extracts. Life Sci 34:385–392

    PubMed  CAS  Google Scholar 

  50. Reid IA (1976) The use of saralasin to evaluate the function of the brain renin-angiotensin system. Prog Biochem Pharmacol 12:117–134

    PubMed  CAS  Google Scholar 

  51. Kawasaki H, Takasaki K, Furukawa T (1987) Exaggerated pressor response to centrally administered renin in freely moving, spontaneously hypertensive rats. Eur J Pharmacol 138:351–357

    PubMed  CAS  Google Scholar 

  52. Corvol P, Michaud A, Soubrier F, Williams TA (1995) Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J Hypertens 13:S3–S10

    CAS  Google Scholar 

  53. Strittmatter SM, Lo MMS, Javitch JA, Snyder SH (1984) Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: localization to a striatonigral pathway. Proc Natl Acad Sci U S A 81:1599–1603

    PubMed  CAS  Google Scholar 

  54. Koshiya K, Kato T, Tanaka R, Kato T (1984) Brain peptidases: their possible neuronal and glial localization. Brain Res 324:261–270

    PubMed  CAS  Google Scholar 

  55. Larrinaga G, Callado LF, Agirregoitia N, Varona A, Gil J (2005) Subcellular distribution of membrane-bound aminopeptidases in the human and rat brain. Neurosci Lett 383:136–140

    PubMed  CAS  Google Scholar 

  56. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    PubMed  CAS  Google Scholar 

  57. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542

    PubMed  CAS  Google Scholar 

  58. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546

    PubMed  CAS  Google Scholar 

  59. Kakar SS, Riel KK, Neill JD (1992) Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-1B) in the brain. Biochem Biophys Res Commun 185:688–692

    PubMed  CAS  Google Scholar 

  60. Eggena P, Zhu JH, Clegg K, Barrett JD (1993) Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA. Hypertension 22:496–501

    PubMed  CAS  Google Scholar 

  61. Pendergrass KD, Averill DB, Ferrario CM, Diz DI, Chappell MC (2006) Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal Physiol 290:F1497–F1506

    PubMed  CAS  Google Scholar 

  62. Chen R, Mukhin YV, Garnovskaya MN, Thielen TE, Iijima Y, Huang C, Raymond JR, Ullian ME, Paul RV (2000) A functional angiotensin II receptor-GFP fusion protein: evidence for agonist-dependent nuclear translocation. Am J Physiol Renal Physiol 279:F440–F448

    PubMed  CAS  Google Scholar 

  63. Lee DK, Lanca AJ, Cheng R, Nguyen T, Ji XD, Gobeil F Jr, Chemtob S, George SR, O’Dowd BF (2004) Agonist-independent nuclear localization of the Apelin, angiotensin AT1, and bradykinin B2 receptors. J Biol Chem 279:7901–7908

    PubMed  CAS  Google Scholar 

  64. Lu D, Yang H, Shaw G, Raizada MK (1998) Angiotensin II-induced nuclear targeting of the angiotensin type 1 (AT(1)) receptor in brain neurons. Endocrinology 139:365–375

    PubMed  CAS  Google Scholar 

  65. Huang J, Hara Y, Anrather J, Speth RC, Iadecola C, Pickel VM (2003) Angiotensin II subtype 1A (AT1A) receptors in the rat sensory vagal complex: subcellular localization and association with endogenous angiotensin. Neuroscience 122:21–36

    PubMed  CAS  Google Scholar 

  66. Lippoldt A, Bunnemann B, Iwai N, Metzger R, Inagami T, Fuxe K, Ganten D (1993) Cellular localization of angiotensin type 1 receptor and angiotensinogen mRNAs in the subfornical organ of the rat brain. Neurosci Lett 150:153–158

    PubMed  CAS  Google Scholar 

  67. Raizada MK, Phillips MI, Crews FT, Sumners C (1987) Distinct angiotensin II receptor in primary cultures of glial cells from rat brain. Proc Natl Acad Sci U S A 84:4655–4659

    PubMed  CAS  Google Scholar 

  68. Sumners C, Tang W, Zelezna B, Raizada MK (1991) Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Proc Natl Acad Sci U S A 88:7567–7571

    PubMed  CAS  Google Scholar 

  69. Gebke E, Muller AR, Jurzak M, Gerstberger R (1998) Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs. Neuroscience 85:509–520

    PubMed  CAS  Google Scholar 

  70. Muscella A, Aloisi F, Marsigliante S, Levi G (2000) Angiotensin II modulates the activity of Na+,K+-ATPase in cultured rat astrocytes via the AT1 receptor and protein kinase C-delta activation. J Neurochem 74:1325–1331

    Article  PubMed  CAS  Google Scholar 

  71. Yoshida H, Imaizumi T, Tanji K, Sakaki H, Metoki N, Sato Y, Wakabayashi K, Kimura H, Satoh K (2006) Interleukin-1beta enhances the angiotensin-induced expression of plasminogen activator inhibitor-1 through angiotensin receptor upregulation in human astrocytes. Brain Res 1073–1074:38–47

    PubMed  Google Scholar 

  72. Matute C, Pulakat L, Rio C, Valcarcel C, Miledi R (1994) Properties of angiotensin II receptors in glial cells from the adult corpus callosum. Proc Natl Acad Sci U S A 91:3774–3778

    PubMed  CAS  Google Scholar 

  73. Fogarty DJ, Matute C (2001) Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia 35:131–146

    PubMed  CAS  Google Scholar 

  74. Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S (2001) Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 531:445–458

    PubMed  CAS  Google Scholar 

  75. Thomas MA, Fleissner G, Stohr M, Hauptfleisch S, Lemmer B (2004) Localization of components of the renin-angiotensin system in the suprachiasmatic nucleus of normotensive Sprague-Dawley rats: part B. angiotensin II (AT1)-receptors, a light and electron microscopic study. Brain Res 1008:224–235

    PubMed  CAS  Google Scholar 

  76. Thomas MA, Fleissner G, Hauptfleisch S, Lemmer B (2003) Subcellular identification of angiotensin I/II- and angiotensin II (AT1)-receptor-immunoreactivity in the central nervous system of rats. Brain Res 962:92–104

    PubMed  CAS  Google Scholar 

  77. Allen AM, Dosanjh JK, Erac M, Dassanayake S, Hannan RD, Thomas WG (2006) Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension 47:1054–1061

    PubMed  CAS  Google Scholar 

  78. Blair-West JR, Coghlan JP, Denton DA, Funder JW, Scoggins BA, Wright RD (1971) The effect of the heptapeptide (2–8) and hexapeptide (3–8) fragments of angiotensin II on aldosterone secretion. J Clin Endocrinol Metab 32:575–578

    Article  PubMed  CAS  Google Scholar 

  79. Devynck MA, Pernollet MG, Matthews PG, Khosla MC, Bumpus FM, Meyer P (1977) Specific receptors for des-Asp1-angiotensin II (“angiotensin III”) in rat adrenals. Proc Natl Acad Sci U S A 74:4029–4032

    PubMed  CAS  Google Scholar 

  80. Harding JW, Felix D (1987) The effects of the aminopeptidase inhibitors amastatin and bestatin on angiotensin-evoked neuronal activity in rat brain. Brain Res 424:299–304

    PubMed  CAS  Google Scholar 

  81. Wright JW, Mizutani S, Murray CE, Amir HZ, Harding JW (1990) Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat. J Hypertens 8:969–974

    PubMed  CAS  Google Scholar 

  82. Wright JW, Roberts KA, Cook VI, Murray CE, Sardinia MF, Harding JW (1990) Intracerebroventricularly infused [D-Arg1]angiotensin III, is superior to [D-Asp1]angiotensin II, as a pressor agent in rats. Brain Res 514:5–10

    PubMed  CAS  Google Scholar 

  83. Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci U S A 93:11968–11973

    PubMed  CAS  Google Scholar 

  84. Song LJ, Wilk S, Healy DP (1997) Aminopeptidase A antiserum inhibits intracerebroventricular angiotensin II-induced dipsogenic and pressor responses. Brain Res 744:1–6

    PubMed  CAS  Google Scholar 

  85. Reaux A, Fournie-Zaluski MC, David C, Zini S, Roques BP, Corvol P, Llorens-Cortes C, (1999) Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci U S A 96:13415–13420

    PubMed  CAS  Google Scholar 

  86. Reaux A, Fournie-Zaluski MC, Llorens-Cortes C (2001) Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab 12:157–162

    PubMed  CAS  Google Scholar 

  87. Wright JW, Tamura-Myers E, Wilson WL, Roques BP, Llorens-Cortes C, Speth RC Harding JW (2003) Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. Am J Physiol Regul Integr Comp Physiol 284:R725–R733

    PubMed  CAS  Google Scholar 

  88. Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW (2005) Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res 1060:108–117

    PubMed  CAS  Google Scholar 

  89. Sullivan MJ, Harding JW, Wright JW (1988) Differential effects of aminopeptidase inhibitors on angiotensin-induced pressor responses. Brain Res 456:249–253

    PubMed  CAS  Google Scholar 

  90. Burson JM, Aguilera G, Gross KW, Sigmund CD (1994) Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Physiol 267:E260–E267

    PubMed  CAS  Google Scholar 

  91. Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD (1992) Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 183:1090–1096

    PubMed  CAS  Google Scholar 

  92. Sandberg K, Ji H, Clark AJ, Shapira H, Catt KJ (1992) Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem 267:9455–9458

    PubMed  CAS  Google Scholar 

  93. Yamano Y, Ohyama K, Chaki S, Guo D-F, Inagami T (1992) Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem Biophys Res Commun 187:1426–1431

    PubMed  CAS  Google Scholar 

  94. George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O’Dowd BF (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275:26128–26135

    PubMed  CAS  Google Scholar 

  95. Hays JL Watowich SJ (2004) Oligomerization-dependent changes in the thermodynamic properties of the TPR-MET receptor tyrosine kinase. Biochem 43:10570–10578

    Google Scholar 

  96. Abhold RH, Sullivan MJ, Wright JW, Harding JW (1987) Binding, degradation and pressor activity of angiotensins II and III after aminopeptidase inhibition with amastatin and bestatin. J Pharmacol Exp Ther 242:957–962

    PubMed  CAS  Google Scholar 

  97. Karamyan V, Gadepalli R, Rimoldi J, Speth R (2007) Preservation of 125-I-Angiotensin II in brain AT-1 receptor binding assays. 2007 Experimental Biology Meeting abstracts, Abstract # 571.3;http://www.eb2007-online.com/bin/faseb.html

  98. Kokje R, Wilson W, Brown T, Karamyan V, Wright J, Speth R (2007) Pressor actions of aminopeptidase-resistant analogs of angiotensin II in the rat brain: challenging the angiotensin III hypothesis. Hypertension 49:1328–1335

    PubMed  CAS  Google Scholar 

  99. Regoli D, Rioux F, Park WK, Choi C (1974) Role of the N-terminal amino acid for the biological activities of angiotensin and inhibitory analogues. Can J Physiol Pharmacol 52:39–49

    PubMed  CAS  Google Scholar 

  100. Faber F, Gembardt F, Sun X, Mizutani S, Siems WE, Walther T (2006) Lack of angiotensin II conversion to angiotensin III increases water but not alcohol consumption in aminopeptidase A-deficient mice. Regul Pept 136:130–137

    PubMed  CAS  Google Scholar 

  101. Rangel R, Sun Y, Guzman-Rojas L, Ozawa MG, Sun J, Giordano RJ, Van Pelt CS, Tinkey PT, Behringer RR, Sidman RL, Arap W, Pasqualini R (2007) Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci U S A 104:4588–4593

    PubMed  CAS  Google Scholar 

  102. Goto Y, Hattori A, Ishii Y, Mizutani S, Tsujimoto M (2006) Enzymatic properties of human aminopeptidase A. Regulation of its enzymatic activity by calcium and angiotensin IV. J Biol Chem 281:23503–23513

    PubMed  CAS  Google Scholar 

  103. Mobley SC, Mandel DA, Schreihofer AM (2006) Systemic cholecystokinin differentially affects baro-activated GABAergic neurons in rat caudal ventrolateral medulla. J Neurophysiol 96:2760–2768

    PubMed  CAS  Google Scholar 

  104. Matsas R, Stephenson SL, Hryszko J, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides. Phase separation of synaptic membrane preparations with Triton X-114 reveals the presence of aminopeptidase N. Biochem J 231:445–449

    PubMed  CAS  Google Scholar 

  105. Danziger RS (2007) Aminopeptidase N in arterial hypertension. Heart Fail Rev Nov 16 [Epub ahead of print]

  106. Keay KA, Crowfoot LJ, Floyd NS, Henderson LA, Christie MJ, Bandler R (1997) Cardiovascular effects of microinjections of opioid agonists into the ‘Depressor Region’ of the ventrolateral periaqueductal gray region. Brain Res 762:61–71

    PubMed  CAS  Google Scholar 

  107. Li P, Tjen AL, Longhurst JC (2001) Rostral ventrolateral medullary opioid receptor subtypes in the inhibitory effect of electroacupuncture on reflex autonomic response in cats. Auton Neurosci 89:38–47

    PubMed  CAS  Google Scholar 

  108. Nagashima A, Takano Y, Tateishi K, Matsuoka Y, Hamaoka T, Kamiya H (1989) Cardiovascular roles of tachykinin peptides in the nucleus tractus solitarii of rats. Brain Res 487:392–396

    PubMed  CAS  Google Scholar 

  109. von Bohlen Und HO (2005) The renin-angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci 6:355–371

    Google Scholar 

  110. Chauvel EN, Llorens-Cortes C, Coric P, Wilk S, Roques BP, Fournie-Zaluski MC (1994) Differential inhibition of aminopeptidase A and aminopeptidase N by new beta-amino thiols. J Med Chem 37:2950–2957

    PubMed  CAS  Google Scholar 

  111. Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Erick Bourassa for the preparation of figure 2. In preparing this manuscript the authors frequently visited the web site of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) http://www.chem.qmul.ac.uk/iubmb/enzyme/ and the web site of MEROPS peptidase database http://www.merops.sanger.ac.uk/ for background information [111]. Vardan T. Karamyan is supported by the Peptide Radioiodination Service Center of the School of Pharmacy of the University of Mississippi and by NIH Division of Research Resources grant (RR-0212929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Speth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speth, R.C., Karamyan, V.T. The significance of brain aminopeptidases in the regulation of the actions of angiotensin peptides in the brain. Heart Fail Rev 13, 299–309 (2008). https://doi.org/10.1007/s10741-007-9078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9078-2

Keywords

Navigation