Skip to main content
Log in

Binding of Isolectin IB4 to Neurons of the Mouse Enteric Nervous System

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The plant lectin, IB4, binds to primary afferent neurons of dorsal root and trigeminal ganglia, where it is selective for nociceptive neurons. In the enteric nervous system of the guinea-pig IB4 labels intrinsic primary afferent neurons, which are believed to have roles as nociceptors. Here we investigate whether IB4 binding is also a marker of intrinsic primary afferent neurons in the mouse. Neurons that bound IB4 were common in the enteric plexuses of the small intestine and colon. Labeled neurons were rare in the stomach, and absent from the esophagus and gallbladder. Binding was to the cell surface, initial parts of axons and to clumps in the cytoplasm. Similar binding occurred on small and medium sized neurons of dorsal root, nodose and trigeminal ganglia. In the enteric nervous system, IB4 revealed large round or oval (type II) neurons, type I neurons with prominent laminar dendrites and small neurons of myenteric ganglia. The type II neurons were immunoreactive for calretinin, and some type I neurons were immunoreactive for nitric oxide synthase. Most neurons in the submucosal ganglia bound IB4, and some of these were vasoactive intestinal peptide immunoreactive. Thus IB4 binds to specific subgroups of enteric neurons in the mouse. These include intrinsic primary afferent neurons, but other neurons, including secretomotor neurons, are labeled. The results suggest that IB4 is not a specific label for enteric nociceptive neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson CR, Furness JB, Woodman HL et al (1995) Characterisation of neurons with nitric oxide synthase immunoreactivity that project to prevertebral ganglia. J Auton Nerv Syst 52:107–116

    Article  PubMed  CAS  Google Scholar 

  • Brehmer A (2006) Structure of enteric neurons. Adv Anat 186:1–95

    CAS  Google Scholar 

  • Brehmer A, Schrödl F, Neuhuber W (1999) Morphological classifications of enteric neurons – 100 years after Dogiel. Anat Embryol 200:125–135

    Article  PubMed  CAS  Google Scholar 

  • Brookes SJH (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70

    Article  PubMed  CAS  Google Scholar 

  • Cowles VE, Sarna SK (1990) Effect of T. spiralis infection on intestinal motor activity in the fasted state. Am J Physiol 259:G693–701

    PubMed  CAS  Google Scholar 

  • Djouhri L, Bleazard L, Lawson SN (1998) Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. J Physiol 513:857–872

    Article  PubMed  CAS  Google Scholar 

  • Furness JB (2006) The Enteric Nervous System. Blackwell, Oxford

    Google Scholar 

  • Furness JB, Costa M, Walsh JH (1981) Evidence for and significance of the projection of VIP neurons from the myenteric plexus to the taenia coli in the guinea-pig. Gastroenterology 80:1557–1561

    PubMed  CAS  Google Scholar 

  • Furness JB, Jones C, Nurgali K et al. (2004a) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    Article  CAS  Google Scholar 

  • Furness JB, Robbins HL, Xiao J et al. (2004b) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317:1–12

    Article  CAS  Google Scholar 

  • Gerke MB, Plenderleith MB (2001) Binding sites for the plant lectin Bandeiraea simplicifolia I-isolectin B4 are expressed by nociceptive primary sensory neurones. Brain Res 911:101–104

    Article  PubMed  CAS  Google Scholar 

  • Gershon MD, Kirchgessner AL (1991) Identification, characterization and projections of intrinsic primary afferent neurones of the submucosal plexus: activity- induced expression of c-fos immunoreactivity. J Auton Nerv Syst 33:185–187

    Article  Google Scholar 

  • Hennig GW, Brookes SJH, Costa M (1997) Excitatory and inhibitory motor reflexes in the isolated guinea-pig stomach. J Physiol (Lond) 501:197–212

    Article  Google Scholar 

  • Hind A, Migliori M, Thacker M et al (2005) Primary afferent neurons intrinsic to the intestine, like primary afferent neurons of spinal and cranial sensory ganglia, bind the lectin, IB4. Cell Tissue Res 321:151–157

    Article  PubMed  Google Scholar 

  • Hirst GDS, Johnson SM, van Helden DF (1985) The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. J Physiol (Lond) 361:315–337

    CAS  Google Scholar 

  • Ingelfinger FJ (1958) Esophageal motility. Physiol Rev 38:533–584

    PubMed  CAS  Google Scholar 

  • Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81:929–969

    PubMed  CAS  Google Scholar 

  • Jiang MM, Kirchgessner AL, Gershon MD et al (1993) Cholera toxin-sensitive neurons in guinea pig submucosal plexus. Am J Physiol 264:G86–G94

    PubMed  CAS  Google Scholar 

  • Kirchgessner AL, Tamir H, Gershon MD (1992) Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci 12:235–248

    PubMed  CAS  Google Scholar 

  • Laitinen L (1987) Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 19:225–234

    Article  PubMed  CAS  Google Scholar 

  • Lawrentjew BJ (1931) Zur Lehre von der Cytoarchitektonik des peripheren autonomen Nervensystems. 1. Die Cytoarchitektonik der Ganglien des Verdauungskanals beim Hunde. Z Mikrosk Anat Forsch 23:527–551

    Google Scholar 

  • Li ZS, Furness JB (2000) Inputs from intrinsic sensory neurons to NOS immunoreactive neurons in the myenteric plexus of guinea-pig ileum. Cell Tissue Res 299:1–8

    PubMed  CAS  MATH  Google Scholar 

  • Lundgren O (2002) Enteric nerves and diarrhoea. Pharmacol Toxicol 90:109–120

    Article  PubMed  CAS  Google Scholar 

  • Lundgren O, Peregrin AT, Persson K et al (2000) Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 287:491–495

    Article  PubMed  CAS  ADS  Google Scholar 

  • Mathias JR, Nogueira J, Martin JL et al (1982) Escherichia coli heat-stable toxin: its effect on motility of the small intestine. Am J Physiol 242:G360–G363

    PubMed  CAS  Google Scholar 

  • Mawe GM (1998) Nerves and hormones interact to control gallbladder function. News Physiol Sci 13:84–90

    PubMed  CAS  Google Scholar 

  • Mawe GM, Moses PL, Pozo MJ (2003) Motility of the biliary tract. In: Yamada T (ed) Textbook of Gastroenterology. Lippincott Williams & Wilikins, Philadelphia, pp 248–265

    Google Scholar 

  • Neylon CB, Nurgali K, Hunne B et al (2004) Intermediate-conductance calcium-activated potassium channels in enteric neurones of the mouse: pharmacological, molecular and immunochemical evidence for their role in mediating the slow afterhyperpolarization. J Neurochem 90:1414–1422

    Article  PubMed  CAS  Google Scholar 

  • Nurgali K, Stebbing MJ, Furness JB (2004) Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comp Neurol 468:112–124

    Article  PubMed  Google Scholar 

  • Reiche D, Pfannkuche H, Michel K et al (1999) Immunohistochemical evidence for the presence of calbindin containing neurones in the myenteric plexus of the guinea-pig stomach. Neurosci Lett 270:71–74

    Article  PubMed  CAS  Google Scholar 

  • Sang Q, Williamson S, Young HM (1997) Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. J Anat 190:209–222

    Article  PubMed  CAS  Google Scholar 

  • Schemann M, Grundy D (1992) Electrophysiological identification of vagally innervated enteric neurons in guinea pig stomach. Am J Physiol 263:G709–G718

    PubMed  CAS  Google Scholar 

  • Schemann M, Reiche D, Michel K (2001) Enteric pathways in the stomach. Anat Rec 262:47–57

    Article  PubMed  CAS  Google Scholar 

  • Schemann M, Schaaf C, Mäder M (1995) Neurotransmitter coding of enteric neurones in the guinea pig stomach. J Comp Neurol 353:161–178

    Article  PubMed  CAS  Google Scholar 

  • Schemann M, Wood JD (1989) Electrical behaviour of myenteric neurones in the gastric corpus of the guinea-pig. J Physiol (Lond) 417:501–518

    CAS  Google Scholar 

  • Schubert ML, Makhlouf GM (1993) Gastrin secretion induced by distension is mediated by gastric cholinergic and vasoactive intestinal peptide neurons in rats. Gastroenterology 104:834–839

    PubMed  CAS  Google Scholar 

  • Spencer NJ, Hennig GW, Smith TK (2003) Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol 284:G231–G241

    CAS  Google Scholar 

  • Stucky CL, Lewin GR (1999) Isolectin B4-positive and -negative nociceptors are functionally distinct. J Neurosci 19:6497–6505

    PubMed  CAS  Google Scholar 

  • Tack JF, Wood JD (1992) Electrical behaviour of myenteric neurones in the gastric antrum of the guinea-pig. J Physiol (Lond) 447:49–66

    CAS  Google Scholar 

  • Timmermans J-P, Hens J, Adriaensen D (2001) Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat Rec 262:71–78

    Article  PubMed  CAS  Google Scholar 

  • Van Nassauw L, Wu M, De Jonge F et al. (2005) Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochem Cell Biol 124:369–377

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Matsuda Y, Samejima A (1978) Tetrodotoxin-resistant sodium and calcium components of action potentials in dorsal root ganglion cells of the adult mouse. J Neurophysiol 41:1096–1106

    PubMed  CAS  Google Scholar 

  • Yuan SY, Brookes SJH, Costa M (1997) Distension-evoked ascending and descending reflexes in the isolated guinea-pig stomach. J Auton Nerv Syst 62:94–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Health and Medical Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B Furness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thacker, M., Zhang, F.L., Jungnickel, S.R. et al. Binding of Isolectin IB4 to Neurons of the Mouse Enteric Nervous System. J Mol Hist 37, 61–68 (2006). https://doi.org/10.1007/s10735-006-9033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-006-9033-x

Keywords

Navigation