Skip to main content

Advertisement

Log in

Combining conservative and variable markers to infer the evolutionary history of Prunus subgen. Amygdalus s.l. under domestication

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genus Prunus L. is large and economically important. However, phylogenetic relationships within Prunus at low taxonomic level, particularly in the subgenus Amygdalus L. s.l., remain poorly investigated. This paper attempts to document the evolutionary history of Amygdalus s.l. and establishes a temporal framework, by assembling molecular data from conservative and variable molecular markers. The nuclear s6pdh gene in combination with the plastid trnSG spacer are analyzed with bayesian and maximum likelihood methods. Since previous phylogenetic analysis with these markers lacked resolution, we additionally analyzed 13 nuclear SSR loci with the δµ2 distance, followed by an unweighted pair group method using arithmetic averages algorithm. Our phylogenetic analysis with both sequence and SSR loci confirms the split between sections Amygdalus and Persica, comprising almonds and peaches, respectively. This result is in agreement with biogeographic data showing that each of the two sections is naturally distributed on each side of the Central Asian Massif chain. Using coalescent based estimations, divergence times between the two sections strongly varied when considering sequence data only or combined with SSR. The sequence-only based estimate (5 million years ago) was congruent with the Central Asian Massif orogeny and subsequent climate change. Given the low level of differentiation within the two sections using both marker types, the utility of combining microsatellites and data sequences to address phylogenetic relationships at low taxonomic level within Amygdalus is discussed. The recent evolutionary histories of almond and peach are discussed in view of the domestication processes that arose in these two phenotypically-diverging gene pools: almonds and peaches were domesticated from the Amygdalus s.s. and Persica sections, respectively. Such economically important crops may serve as good model to study divergent domestication process in close genetic pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1973) Maximum likelihood identification of gaussian autoregressive moving average models. Biometrika 60:255–265

    Article  Google Scholar 

  • Arus P, Gardiner S (2007) Genomics for improvement of Rosaceae temperate tree fruit genomics-assisted crop improvement. Springer, Netherlands

    Google Scholar 

  • Bortiri E, Oh SH et al (2001) Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26:797–807

    Google Scholar 

  • Bortiri E, Oh SH, Gao FY, Potter D (2002) The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Am J Bot 89:1697–1708

    Article  PubMed  CAS  Google Scholar 

  • Browicz K, Zohary D (1996) The genus Amygdalus L (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Evol 43:229–247

    Article  Google Scholar 

  • Bruford MW, Wayne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943

    Article  PubMed  CAS  Google Scholar 

  • Cipriani G, Lot G et al (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Delplancke M (2011) Histoire évolutive de l’amandier cultivé (Prunus dulcis) en Méditerranée: regards croisés sur la domestication, dialogue entre la biologie et l’ethnobiologie, Biologie des populations. Université Montpellier 2, Montpellier

  • Delplancke M, Alvarez N et al (2012) Geneflow among wild and domesticated almond species: insights from chloroplast and nuclear markers. Evol Appl 5:317–329

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Denisov VP (1988) Almond genetic resources in the USSR and their use in production and breeding. Acta Hortic 224:299–306

    Article  Google Scholar 

  • Dicenta F, Ortega E, Martinez-Gomez P (2007) Use of recessive homozygous genotypes to assess genetic control of kernel bitterness in almond. Euphytica 153:221–225

    Article  CAS  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dirlewanger EP, Cosson P et al (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. Evol Biol 7:214

    Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. Bioinformatics 5:113

    PubMed  PubMed Central  Google Scholar 

  • Food and Agricultural Organization (2008) FAOSTAT database on agriculture. Food and Agriculture Organization of the United Nations, Rome

  • Felsenstein J (1995) PHYLIP (phylogeny inference package). University of Washington, Seattle

    Google Scholar 

  • Goldstein DB, Pollock DD (1997) Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered 88:335–342

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995a) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995b) Genetic absolute dating based on microsatellites and the origin of modern humans. PNAS 92(15):6723–6727

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grasselly C (1976) Origine et évolution de l’amandier cultivé. Options Méditerr 32:45–49

    Google Scholar 

  • Grasselly C (1977) Réflexions sur les caractéristiques des espèces sauvages d’amandier et sur leur utilisation éventuelle dans des programmes d’amélioration génétique. 3e Colloque du groupe de recherche et d’étude méditerranéen pour le pistachier et l’amandier. Bari, Italy, GREMPA, CIHEAM, pp 70–76

  • Gupta PK, Balyan IS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci India 70:45–54

    CAS  Google Scholar 

  • Heppner J (1923) The factor for bitterness in the sweet almond. Genetics 8:390–392

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hey J (2010) The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol Biol Evol 27:921–933

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. PNAS 104:2785–2790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kalinowski ST (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36

    Article  PubMed  CAS  Google Scholar 

  • Khadari B, Grout C, Santoni S, Kjellberg F (2005) Contrasted genetic diversity and differentiation among Mediterranean populations of Ficus carica L.: a study using mtDNA RFLP. Genet Resour Crop Evol 52:97–109

    Article  CAS  Google Scholar 

  • Kluge AG (1989) A concern for evidence and phylogenetic hypothesis of relationships among Epicrates. Syst Zool 38:7–25

    Article  Google Scholar 

  • Layne D, Bass D (2008) The peach: botany, production and uses. CABI, London

  • Lee S, Wen J (2001) A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot 88:150–160

    Article  PubMed  CAS  Google Scholar 

  • Marriage TN, Hudman S et al (2009) Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103:310–317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martinez-Gomez P, Arulsekar S, Potter D, Gradziel TM (2003) Relationships among peach, almond, and related species as detected by simple sequence repeat markers. J Am Soc Hortic Sci 128:667–671

    Google Scholar 

  • Martinoli D, Jacomet S (2004) Identifying endocarp remains and exploring their use at Epipalaeolithic Okuzini in southwest Anatolia, Turkey. Veg Hist Archaeobot 13:45–54

    Article  Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98:1389–1414

    Article  PubMed  Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. PNAS 104:3289–3294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morrison DA (2006) Multiple sequence alignment for phylogenetic purposes. Aust Syst Bot 19:479–539

    Article  CAS  Google Scholar 

  • Mowrey BD, Werner DJ (1990) Phylogenetic relationships among species of Prunus as inferred by isozyme markers. Theor Appl Genet 80:129–133

    Article  PubMed  CAS  Google Scholar 

  • Negri P, Bassi D, Magnanini E, Rizzo M, Bartolozzi F (2008) Bitterness inheritance in apricot (P. armeniaca L.) seeds. Tree Genet Genomes 4:767–776

    Article  Google Scholar 

  • Nei M (1978) Theory of genetic distance and evolution of human races. Jpn J Human Genet 23:341–369

    Article  CAS  Google Scholar 

  • Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • Ochieng JW, Steane DA et al (2007) Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genet Mol Biol 30:1125–1134

    Article  CAS  Google Scholar 

  • Ossowski S, Schneeberger K et al (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327(5961):92–94

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Potter D, Eriksson T et al (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43. doi:10.1007/s00606-007-0539-9

  • Rambault A (2006) Figure tree. http://tree.bio.ed.ac.uk/software/figtree

  • Rehder A (1940) A manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperate regions, 2nd edn. Macmillan, New York

  • Richard M, Thorpe RS (2001) Can microsatellites be used to infer phylogenies? Evidence from population affinities of the Western Canary Island lizard (Gallotia galloti). Mol Phylogenet Evol 20:351–360

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Ruzzante DE (1998) A comparison of several measures of genetic distance and population structure with microsatellite data: bias and sampling variance. Can J Fish Aquat Sci 55:1–14

    Article  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Socias i Company, Felipe AJ (1988) Self-compatibility in almond: transmission and recent advances. Acta Hortic 224:307–317

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Strasburg JL, Rieseberg LH (2010) How robust are “Isolation with Migration” analyses to violations of the im model? A simulation study. Mol Biol Evol 27:297–310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun DG, An ZS, Shaw J, Bloemendal J, Youbin S (1998) Magnetostratigraphy and palaeoclimatic significance of late tertiary aeolian sequences in the Chinese Loess Plateau. Geophys J Int 134:207–212

    Article  CAS  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    PubMed  CAS  PubMed Central  Google Scholar 

  • Testolin R, Marrazzo T et al (2000) Microsatellite DNA in peach (Prunus persica (L.) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  PubMed  CAS  Google Scholar 

  • Vavilov NI, Dorofeev VF (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Vigouroux Y, Jaqueth JS et al (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Wakeley J, Nielsen R, Liu-Cordero SN, Ardlie K (2001) The discovery of single-nucleotide polymorphisms- and inferences about human demographic history. Am J Hum Genet 69:1332–1347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Watkins R (1976) Cherry, plum, peach, apricot and almond. In: Smartt J, Simmonds N (eds) Evolution of crop plants. S. NW. Longman, London, pp 242–247

    Google Scholar 

  • Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312(5780):1608–1610

    Article  PubMed  CAS  Google Scholar 

  • Wen J, Berggren ST et al (2008) Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences. J Syst Evol 46:322–332

    Google Scholar 

  • Whitton J, Rieseberg LH, Ungerer MC (1997) Microsatellite loci are not conserved across the Asteraceae. Mol Biol Evol 14:204–209

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson M, McInerney J, Hirt RP, Foster PG, Embley TM (2007) Of clades and clans: terms for phylogenetic relationships in unrooted trees. Trends Ecol Evol 22:114–115

    Article  PubMed  Google Scholar 

  • Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Veg Hist Archaeobot 17:313–325

    Article  Google Scholar 

  • Willcox G, Buxo R, Herveux L (2009) Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria. Holocene 19:151–158

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. PNAS 84(24):9054–9058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Won YJ, Hey J (2005) Divergence population genetics of chimpanzees. Mol Biol Evol 22:297–307

    Article  PubMed  CAS  Google Scholar 

  • Yazbek M (2010) Systematics of Prunus subgenus Amygdalus: monograph and phylogeny. Cornell University, Ithaca

    Google Scholar 

  • Yazbek M, Oh SH (2013) Peaches and almonds: phylogeny of Prunus subg. Amygdalus (Rosaceae) based on DNA sequences and morphology. Plant Syst Evol 299:1403–1418

    Article  Google Scholar 

  • Zeder MA (2006) Documenting domestication: new genetic and archaeological paradigms. University of California Press, Oakland

    Google Scholar 

  • Zeinalabedini M, Khayam-Nekoui M, Grigorian V, Gradziel TM, Martinez-Gomez P (2010) The origin and dissemination of the cultivated almond as determined by nuclear and chloroplast SSR marker analysis. Sci Hortic 125:593–601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was funded by the “FruitMed Project”, distributed by the French Foundation Agropolis. N. Arrigo, N. Alvarez, A. Espíndola were funded by the Swiss National Science Foundation (Grant No. 132747, and an Ambizione fellowship PZ00P3_126624). Sequencing was done in Cornell University Life Sciences Core Laboratories Center (CLC) and genotyping in the ‘Service Commun de Marqueurs Génétiques en Ecologie’ of the UMR CEFE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Yazbek.

Additional information

Malou Delplancke and Mariana Yazbek have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delplancke, M., Yazbek, M., Arrigo, N. et al. Combining conservative and variable markers to infer the evolutionary history of Prunus subgen. Amygdalus s.l. under domestication. Genet Resour Crop Evol 63, 221–234 (2016). https://doi.org/10.1007/s10722-015-0242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0242-6

Keywords

Navigation