Skip to main content
Log in

Identification and biochemical characterization of WbwB, a novel UDP-Gal: Neu5Ac-R α1,4-galactosyltransferase from the intestinal pathogen Escherichia coli serotype O104

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The intestinal pathogen Escherichia coli serotype O104:H4 (ECO104) can cause bloody diarrhea and haemolytic uremic syndrome. The ECO104 O antigen has the unique repeating unit structure [4Galα1–4Neu5,7,9Ac3α2–3Galβ1–3GalNAcβ1-], which includes the mammalian sialyl-T antigen as an internal structure. Previously, we identified WbwC from ECO104 as the β3Gal-transferase that synthesizes the T antigen, and showed that α3-sialyl-transferase WbwA transfers sialic acid to the T antigen. Here we identify the wbwB gene product as a unique α1,4-Gal-transferase WbwB that transfers Gal from UDP-Gal to the terminal sialic acid residue of Neu5Acα2–3Galβ1–3GalNAcα-diphosphate-lipid acceptor. NMR analysis of the WbwB enzyme reaction product indicated that Galα1-4Neu5Acα2–3Galβ1–3GalNAcα-diphosphate-lipid was synthesized. WbwB from ECO104 has a unique acceptor specificity for terminal sialic acid as well as the diphosphate group in the acceptor. The characterization studies showed that WbwB does not require divalent metal ion as a cofactor. Mutagenesis identified Lys243 within an RKR motif and both Glu315 and Glu323 of the fourth EX7E motif as essential for the activity. WbwB is the final glycosyltransferase in the biosynthesis pathway of the ECO104 antigen repeating unit. This work contributes to knowledge of the biosynthesis of bacterial virulence factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muniesa, M., Hammeri, J., Hertwig, S., Appel, B., Brussow, H.: Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl. Environ. Microbiol. 78, 4065–4073 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trachtman, H.: Escherichia Coli O104:H4 outbreak in Germany. New Engl. J. Med. 366, 76 (2012)

    Google Scholar 

  3. Qin, J., Cui, Y., Zhao, X., Rohde, H., Liang, T., Wolters, M., Li, D., Belmar Campos, C., Christner, M., Song, Y., Yang, R.: Identification of the Shiga toxin-producing Escherichia coli O104:H4 strain responsible for a food poisoning outbreak in Germany by PCR. J. Clin. Microbiol. 49, 3439–3440 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bengoeachea, J.A., Najdenski, H., Skurnik, M.: Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen effects the expression of the other Yersinia virulence factors. Mol. Microbiol. 52, 451–469 (2004)

    Article  Google Scholar 

  5. Gamian, A., Romanowska, E., Ulrich, J., Defaye, J.: The structure of the sialic acid-containing Escherichia Coli O104 O-specific polysaccharide and its linkage to the core region in lipopolysaccharide. Carbohydr. Res. 236, 195–208 (1992)

    Article  CAS  PubMed  Google Scholar 

  6. Brockhausen, I.: Crossroads between bacterial and mammalian glycosyltransferases. Front. Immunol. 5, 1–21 (2014)

    Article  CAS  Google Scholar 

  7. Wang, L., Briggs, C.E., Rothemund, D., Fratamico, P., Luchansky, J.B., Reeves, P.R.: Sequence of the E. coli O104 antigen gene cluster and identification of O104 specific genes. Gene. 270, 231–236 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Rush, J.S., Alaimo, C., Robbiani, R., Wacker, M., Waechter, C.J.: A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia Coli O157. J. Biol. Chem. 285, 1671–1680 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S., Czuchry, D., Liu, B., Vinnikova, A.N., Gao, Y., Vlahakis, J.Z., Szarek, W.A., Wang, L., Feng, L., Brockhausen, I.: Characterization of two UDP-Gal:GalNAc-diphosphate-lipid 1,3-galactosyltransferases WbwC from Escherichia Coli serotypes O104 and O5. J. Bacteriol. 196, 3122–3133 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Czuchry, D., Desormeaux, P., Stuart, M., Jarvis, D., Matta, K.L., Szarek, W.A., Brockhausen, I.: Identification and biochemical characterization of the novel alpha2,3- sialyltransferase WbwA from the pathogenic Escherichia coli serotype O104. J. Bacteriol. 197, 3760–3768 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitfield, C., Trent, M.S.: Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83, 99–128 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Lehrer, J., Vigeant, K.A., Tatar, L.D., Valvano, M.A.: Functional characterization and membrane topology of Escherichia Coli WecA, a sugar-phosphate transferase initiating the biosynthesis of Enterobacterial common antigen and O-antigen lipopolysaccharide. J. Bacteriol. 189, 2618–2628 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Islam, S.T., Lam, J.S.: Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can. J. Microbiol. 60, 697–716 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Islam, S.T., Huszczynski, S.M., Nugent, T., Gold, A.C., Lam, J.S.: Conserved-residue mutations in Wzy affect O-antigen polymerization and Wzz-mediated chain-length regulation in Pseudomonas aeruginosa PAO1. Sci. Report. 3, 3441 (2013)

    Article  Google Scholar 

  15. Han, W., Wu, B., Zhao, G., Woodward, R., Pettit, N., Cai, L., Thon, V., Wang, P.G.: Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J. Biochem. 287, 5357–5365 (2012)

    CAS  Google Scholar 

  16. Putker, F., Bos, M.P., Tommassen, J.: Transport of lipopolysaccharide to the gram-negative bacterial cell surface. FEMS Microbiol. Rev. 39, 985–1002 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. Romanow, A., Haselhorst, T., Stummeyer, K., Claus, H., Bethe, A., Mühlenhoff, M., Vogel, U., von Itzstein, M., Gerardy-Schahn, R.: Biochemical and biophysical characterization of the Sialyl−/Hexosyltransferase synthesizing the meningococcal serogroup W135 Heteropolysaccharide capsule. J. Biol. Chem. 288, 11718–11730 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romanow, A., Keys, T.G., Stummeyer, K., Freiberer, F., Henrissat, B., Gerardy-Schahn, R.: Dissection of hexosyl-and sialyltransferase domains in the bifunctional capsule polymerase from Neisseria meningitidis W and Y defines a new sialyltransferase family. J. Biol. Chem. 49, 33945–33957 (2014)

    Article  Google Scholar 

  19. Ruane, K.M., Davies, G.J., Matinez-Fleites, C.: Crystal structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA 1558. Proteins. 73, 784–787 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Glover, K.J., Weerapana, E., Imperiali, B.: In vitro assembly of the undecaprenylpyrophosphatelinked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. 102, 14255–11425 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kelley, L.A., Sternberg, M.J.E.: Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Momma, M., Fujimoto, Z.: Interdomain disulfide bridge in the Rice granule bound starch synthase I catalytic domain as elucidated by X-ray structure analysis. Biosci. Biotechnol. Biochem. 76, 1591–1595 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Chua, T.K., Bujnicki, J.M., Tan, T.-C., Huynh, F., Patel, B.K., Sivaraman, J.: The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell. 20, 1059–1072 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vetting, M.W., Frantom, P.A., Blanchard, J.S.: Structural and enzymatic analysis of MshA from Corynebacterium glutamicum substrate-assisted catalysis. J. Biochem. 283, 15834–15844 (2008)

    CAS  Google Scholar 

  25. Xu, C., Liu, B., Hu, B., Han, Y., Feng, L., Allingham, J., Szarek, W.A., Wang, L., Brockhausen, I.: Biochemical characterization of UDP-Gal:GlcNAc-pyrophosphate-lipid beta1,4-galactosyltransferase WfeD, a new enzyme from Shigella boydii type 14 that catalyzes the second step in O-antigen repeating-unit synthesis. J. Bacteriol. 193, 449–459 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Yi, W., Yao, Q., Zhang, Y., Motari, E., Lin, S., Wang, P.G.: The wbnH gene of Escherichia Coli O86:H2 encodes an alpha-1,3-N-acetylgalactosaminyl transferase involved in the O-repeating unit biosynthesis. Biochem. Biophys. Res. Commun. 344, 631–639 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Yi, W., Shao, J., Zhu, L., Li, M., Singh, M., Lu, Y., Lin, S., Li, H., Ryu, K., Shen, J., Guo, H., Yao, Q., Bush, C.A., Wang, P.G.: Escherichia Coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen Tetrasaccharide. J. Am. Chem. Soc. 127, 2040–2041 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Riley, J., Xu, C., Brockhausen, I.: Synthesis of acceptor substrate analogs for the study of glycosyltransferases involved in the second step of the biosynthesis of O antigen repeating units. Carbohydr. Res. 345, 586–597 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. Montoya-Peleaz, P., Riley, J.G., Szarek, W.A., Valvano, M.A., Schutzbach, J.S., Brockhausen, I.: Identification of a UDP-Gal: GlcNAc-R galactosyltransferase activity in Escherichia Coli VW187. Bioorg. Med. Chem. Lett. 15, 1205–1211 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Riley, J.G., Menggad, M., Montoya-Peleaz, P., Szarek, W.A., Marolda, C.L., Valvano, M.A., Schutzbach, J.S., Brockhausen, J.: The wbbD gene of E. coli strain VW187 (O7:K1) encodes a UDP-Gal: GlcNAc(alpha)-pyrophosphate-R (beta)1,3-galactosyltransferase involved in the biosynthesis of O7-specific lipopolysaccharide. Glycobiology. 15, 605–613 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Brockhausen, I., Hu, B., Liu, B., Lau, K., Szarek, W.A., Wang, L., Feng, L.: Characterization of two UDP-GlcNAc:beta1,3-glucosyltransferases from the Escherichia coli serotypes O56 and O152. J. Bacteriol. 190, 4922–4932 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, S., Hao, Y., Lam, J.S., Vlahakis, J.Z., Szarek, W.A., Vinnikova, A., Veselovsky, V.V., Brockhausen, I.: Biosynthesis of the Common Polysaccharide Antigen of Pseudomonas aeruginosa PAO1: Characterization and role of GDP-D-rhamnose: GlcNAc/GalNAc-diphosphate-lipid alpha1,3-D-rhamnosyltransferase WbpZ. J. Bacteriol. 197, 2012–2019 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, Y., Liu, B., Strum, S., Schutzbach, J.S., Druzhinina, T.N., Utkina, N.S., Torgov, V.I., Danilov, L.L., Veselovsky, V.V., Vlahakis, J.Z., Szarek, W.A., Wang, L., Brockhausen, I.: Biochemical characterization of WbdN, a beta1,3-glucosyltransferase involved in O-antigen synthesis in enterohemorrhagic Escherichia Coli O157. Glycobiology. 22, 1092–1102 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Chen, C., Liu, B., Xu, Y., Utkina, N., Zhou, D., Danilov, L., Torgov, V., Veselovsky, V., Feng, L.: Biochemical characterization of the novel α-1, 3-galactosyltransferase WclR from Escherichia Coli O3. Carbohydr. Res. 430, 36–43 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. Li, M., Liu, X.-W., Shao, J., Shen, J., Jia, Q., Yi, W., Song, J.K., Woodward, R., Chow, C.S., Wang, P.G.: Characterization of a novel R1,2-Fucosyltransferase of Escherichia Coli O128:B12 and functional investigation of its common motif. Biochemistry. 47, 378–387 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. Liu, X.-W., Xia, C., Lei Li, L., Guan, W.-Y., Pettit, N., Zhang, H.-C., Chen, M., Wang, P.G.: Characterization and synthetic application of a novel beta 1,3-galactosyltransferase from Escherichia Coli O55:H7. Bioorg. Med. Chem. 17, 4910–4915 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. Li, M., Shen, J., Liu, X., Shao, J., Yi, W., Chow, C.S., Wang, P.G.: Identification of a new R1,2-Fucosyltransferase involved in O-antigen biosynthesis of Escherichia Coli O86:B7 and formation of H-type 3 blood group antigen. Biochemistry. 47, 11590–11597 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. Yi, W., Perali, R.S., Eguchi, H., Motari, E., Woodward, R., Wang, P.G.: Characterization of a bacterial beta-1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry. 47, 1241–1248 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. Cid, E., Gomis, R.R., Geremia, R.A., Guinovart, J.J., Ferrer, J.C.: Identification of two essential glutamic acid residues in glycogen synthase. J. Biol. Chem. 275, 33614–33621 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. Kostova, Z., Yan, B.C., Vainauskas, S., Schwartz, R., Menon, A.K., Orlean, P.: Comparative importance in vivo of conserved glutamate residues in the EX7E motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly. Eur. J. Biochem. 270, 4507–4514 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. Absmanner, B., Schmeiser, V., Kaempf, M., Lehle, L.: Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an α1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochem. J. 426, 205–217 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. Sobhanifar, S., Worrall, L.J., Gruninger, R.J., Wasney, G.A., Blaukopf, M., Baumann, L., Lameignere, E., Solomonson, M., Brown, E.D., Withers, S.G., Strynadka, N.C.J.: Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase. PNAS. 112, E576–E585 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greenfield, L.K., Richards, M.R., Vinogradov, E., Wakarchuk, W.W., Lowary, T.L., Whitfield, C.: Domain Organization of the Polymerizing Mannosyltransferases Involved in synthesis of the Escherichia Coli O8 and O9a lipopolysaccharide O-antigens. J. Biol. Chem. 287, 38135–38149 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghafoor, A., Jordens, Z., Rehma, B.H.A.: Role of PelF in Pel polysaccharide biosynthesis in pseudomonas aeruginosa. Appl. Environ. Microbiol. 79, 2968–2978 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mass spectrometry was carried out by J. Wang, Department of Chemistry, Queen’s University. The authors thank F. Sauriol, Department of Chemistry, Queen’s University for NMR analyses and J.S. Schutzbach and J. Allingham for helpful advice. We are grateful to R.Gerardy-Schahn for plasmids encoding SiaD constructs. This work was funded by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inka Brockhausen.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czuchry, D., Szarek, W.A. & Brockhausen, I. Identification and biochemical characterization of WbwB, a novel UDP-Gal: Neu5Ac-R α1,4-galactosyltransferase from the intestinal pathogen Escherichia coli serotype O104. Glycoconj J 35, 65–76 (2018). https://doi.org/10.1007/s10719-017-9799-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-017-9799-y

Keywords

Navigation