Skip to main content
Log in

The class I α1,2-mannosidases of Caenorhabditis elegans

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

During the biosynthesis of N-glycans in multicellular eukaryotes, glycans with the compositions Man5GlcNAc2-3 are key intermediates. However, to reach this ‘decision point’, these N-glycans are first processed from Glc3Man9GlcNAc2 through to Man5GlcNAc2 by a number of glycosidases, whereby up to four α1-2-linked mannose residues are removed by class I mannosidases (glycohydrolase family 47). Whereas in the yeast Saccharomyces cerevisiae there are maximally three members of this protein family, in higher organisms there are multiple class I mannosidases residing in the endoplasmic reticulum and Golgi apparatus. The genome of the model nematode Caenorhabditis elegans encodes seven members of this protein family, whereby four are predicted to be classical processing mannosidases and three are related proteins with roles in quality control. In this study, cDNAs encoding the four predicted mannosidases were cloned and expressed in Pichia pastoris and the activity of these enzymes, designated MANS-1, MANS-2, MANS-3 and MANS-4, was verified. The first two can, dependent on the incubation time, remove three to four residues from Man9GlcNAc2, whereas the action of the other two results in the appearance of the B isomer of Man8GlcNAc2; together the complementary activities of these enzymes result in processing to Man5GlcNAc2. With these data, another gap is closed in our understanding of the N-glycan biosynthesis pathway of the nematode worm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Paschinger, K., Gutternigg, M., Rendić, D., Wilson, I.B.H.: The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr. Res. 343, 2041–2049 (2008)

    Article  PubMed  CAS  Google Scholar 

  2. Butschi, A., Titz, A., Wälti, M., Olieric, V., Paschinger, K., Nöbauer, K., Guo, X., Seeberger, P.H., Wilson, I.B.H., Aebi, M., Hengartner, M., Künzler, M.: Caenorhabditis elegans N-glycan core β-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2. PLOS Pathog. 6, e1000717 (2010)

    Article  PubMed  Google Scholar 

  3. Gutternigg, M., Kretschmer-Lubich, D., Paschinger, K., Rendić, D., Hader, J., Geier, P., Ranftl, R., Jantsch, V., Lochnit, G., Wilson, I.B.H.: Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants and insects. J. Biol. Chem. 282, 27825–27840 (2007)

    Article  PubMed  CAS  Google Scholar 

  4. Paschinger, K., Hackl, M., Gutternigg, M., Kretschmer-Lubich, D., Stemmer, U., Jantsch, V., Lochnit, G., Wilson, I.B.H.: A deletion in the Golgi α-mannosidase II gene of Caenorhabditis elegans results in unexpected non-wild type N-glycan structures. J. Biol. Chem. 281, 28265–28277 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Paschinger, K., Rendić, D., Lochnit, G., Jantsch, V., Wilson, I.B.H.: Molecular basis of anti-horseradish peroxidase staining in Caenorhabditis elegans. J. Biol. Chem. 279, 49588–49598 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. Zhu, S., Hanneman, A., Reinhold, V., Spence, A., Schachter, H.: Caenorhabditis elegans triple null mutant lacking UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β1,2N-acetylglucosaminyltransferase I. Biochem. J. 382, 995–1001 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Struwe, W.B., Hughes, B.L., Osborn, D.W., Boudreau, E.D., Shaw, K.M., Warren, C.E.: Modeling a congenital disorder of glycosylation type I in C. elegans: a genome-wide RNAi screen for N-glycosylation-dependent loci. Glycobiology 19, 1554–1562 (2009)

    Article  PubMed  CAS  Google Scholar 

  8. Schachter, H.: Paucimannose N-glycans in Caenorhabditis elegans and Drosophila melanogaster. Carbohydr. Res. 344, 1391–1396 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. Jelinek-Kelly, S., Herscovics, A.: Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the α-mannosidase which removes one specific mannose residue from Man9GlcNAc. J. Biol. Chem. 263, 14757–14763 (1988)

    PubMed  CAS  Google Scholar 

  10. Camirand, A., Heysen, A., Grondin, B., Herscovics, A.: Glycoprotein biosynthesis in Saccharomyces cerevisiae. Isolation and characterization of the gene encoding a specific processing α-mannosidase. J. Biol. Chem. 266, 15120–15127 (1991)

    PubMed  CAS  Google Scholar 

  11. Forsee, W.T., Palmer, C.F., Schutzbach, J.S.: Purification and characterization of an α-1,2-mannosidase involved in processing asparagine-linked oligosaccharides. J. Biol. Chem. 264, 3869–3876 (1989)

    PubMed  CAS  Google Scholar 

  12. Tremblay, L.O., Herscovics, A.: Cloning and expression of a specific human α1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis. Glycobiology 9, 1073–1078 (1999)

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez, D.S., Karaveg, K., Vandersall-Nairn, A.S., Lal, A., Moremen, K.W.: Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J. Biol. Chem. 274, 21375–21386 (1999)

    Article  PubMed  CAS  Google Scholar 

  14. Herscovics, A., Orlean, P.: Glycoprotein biosynthesis in yeast. FASEB J. 7, 540–550 (1993)

    PubMed  CAS  Google Scholar 

  15. Tulsiani, D.R.P., Hubbard, S.C., Robbins, P.W., Touster, O.: α-D-mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMan5-cleaving enzyme in glycoprotein biosynthesis and mannosidases 1A and 1B are the enzymes converting Man9 precursors to Man5 intermediates. J. Biol. Chem. 257, 3660–3668 (1982)

    PubMed  CAS  Google Scholar 

  16. Bause, E., Bieberich, E., Rolfs, A., Völker, C., Schmidt, B.: Molecular cloning and primary structure of Man9-mannosidase from human kidney. Eur. J. Biochem. 217, 535–540 (1993)

    Article  PubMed  CAS  Google Scholar 

  17. Herscovics, A., Schneikert, J., Athanassiadis, A., Moremen, K.W.: Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals. J. Biol. Chem. 269, 9864–9871 (1994)

    PubMed  CAS  Google Scholar 

  18. Lal, A., Pang, P., Kalelkar, S., Romero, P.A., Herscovics, A., Moremen, K.W.: Substrate specificities of recombinant murine Golgi α1,2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing α1,2-mannosidases. Glycobiology 8, 981–995 (1998)

    Article  PubMed  CAS  Google Scholar 

  19. Tremblay, L.O., Herscovics, A.: Characterisation of a cDNA encoding a novel human Golgi α1,2-mannosidase (IC) involved in N-glycan biosynthesis. J. Biol. Chem. 275, 31655–31660 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Rafiq, M.A., Kuss, A.W., Puettmann, L., Noor, A., Ramiah, A., Ali, G., Hu, H., Kerio, N.A., Xiang, Y., Garshasbi, M., Khan, M.A., Ishak, G.E., Weksberg, R., Ullmann, R., Tzschach, A., Kahrizi, K., Mahmood, K., Naeem, F., Ayub, M., Moremen, K.W., Vincent, J.B., Ropers, H.H., Ansar, M., Najmabadi, H.: Mutations in the α1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 89, 176–182 (2011)

    Article  PubMed  CAS  Google Scholar 

  21. Bischoff, J., Moremen, K., Lodish, H.F.: Isolation, characterization, and expression of cDNA encoding a rat liver endoplasmic reticulum α-mannosidase. J. Biol. Chem. 265, 17110–17117 (1990)

    PubMed  CAS  Google Scholar 

  22. Suzuki, T., Hara, I., Nakano, M., Shigeta, M., Nakagawa, T., Kondo, A., Funakoshi, Y., Taniguchi, N.: Man2C1, an α-mannosidase is involved in the trimming of free oligosaccharides in the cytosol. Biochem. J. 400, 33–41 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. Aebi, M., Bernasconi, R., Clerc, S., Molinari, M.: N-glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35, 74–82 (2010)

    Article  PubMed  CAS  Google Scholar 

  24. Hosokawa, N., Tremblay, L.O., Sleno, B., Kamiya, Y., Wada, I., Nagata, K., Kato, K., Herscovics, A.: EDEM1 accelerates the trimming of α1,2-linked mannose on the C branch of N-glycans. Glycobiology 20, 567–575 (2010)

    Article  PubMed  CAS  Google Scholar 

  25. Olivari, S., Galli, C., Alanen, H., Ruddock, L., Molinari, M.: A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J. Biol. Chem. 280, 2424–2428 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., Romero, P., Sleno, B., Tremblay, L.O., Herscovics, A., Nagata, K., Hosokawa, N.: EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J. Biol. Chem. 281, 9650–9658 (2006)

    Article  PubMed  CAS  Google Scholar 

  27. Clerc, S., Hirsch, C., Oggier, D.M., Deprez, P., Jakob, C., Sommer, T., Aebi, M.: Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J. Cell. Biol. 184, 159–172 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. Gauss, R., Kanehara, K., Carvalho, P., Ng, D.T., Aebi, M.: A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol. Cell. 42, 782–793 (2011)

    Article  PubMed  CAS  Google Scholar 

  29. Kerscher, S., Albert, S., Wucherpfennig, D., Heisenberg, M., Schneuwly, S.: Molecular and genetic analysis of the Drosophila mas-1 (mannosidase-1) gene which encodes a glycoprotein processing α1,2-mannosidase. Dev. Biol. 168, 613–626 (1995)

    Article  PubMed  CAS  Google Scholar 

  30. Roberts, D.B., Mulvany, W.J., Dwek, R.A., Rudd, P.M.: Mutant analysis reveals an alternative pathway for N-linked glycosylation in Drosophila melanogaster. Eur. J. Biochem. 253, 494–498 (1998)

    Article  PubMed  CAS  Google Scholar 

  31. Liebminger, E., Huttner, S., Vavra, U., Fischl, R., Schoberer, J., Grass, J., Blaukopf, C., Seifert, G.J., Altmann, F., Mach, L., Strasser, R.: Class I α-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21, 3850–3867 (2009)

    Article  PubMed  CAS  Google Scholar 

  32. Kajiura, H., Koiwa, H., Nakazawa, Y., Okazawa, A., Kobayashi, A., Seki, T., Fujiyama, K.: Two Arabidopsis thaliana Golgi alpha-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 20, 235–247 (2010)

    Article  PubMed  CAS  Google Scholar 

  33. Nett, J.H., Stadheim, T.A., Li, H., Bobrowicz, P., Hamilton, S.R., Davidson, R.C., Choi, B.K., Mitchell, T., Bobrowicz, B., Rittenhour, A., Wildt, S., Gerngross, T.U.: A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast 28, 237–252 (2011)

    Article  PubMed  CAS  Google Scholar 

  34. Corpet, F.: Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988)

    Article  PubMed  CAS  Google Scholar 

  35. Liu, Y.L., Lu, W.C., Brummel, T.J., Yuh, C.H., Lin, P.T., Kao, T.Y., Li, F.Y., Liao, P.C., Benzer, S., Wang, H.D.: Reduced expression of α-1,2-mannosidase I extends lifespan in Drosophila melanogaster and Caenorhabditis elegans. Aging Cell 8, 370–379 (2009)

    Article  PubMed  CAS  Google Scholar 

  36. Ashida, H., Kato, T., Kawahara, A., Tanaka, Y., Umekawa, U., Yamamoto, K.: Enzymes involved in generation and degradation of free oligosaccharides in the cytosol of Caenorhabditis elegans. J. Appl. Glycosci. 56, 137–143 (2009)

    Article  CAS  Google Scholar 

  37. Romero, P.A., Vallee, F., Howell, P.L., Herscovics, A.: Mutation of Arg(273) to Leu alters the specificity of the yeast N-glycan processing class I α1,2-mannosidase. J. Biol. Chem. 275, 11071–11074 (2000)

    Article  PubMed  CAS  Google Scholar 

  38. Lobsanov, Y.D., Vallee, F., Imberty, A., Yoshida, T., Yip, P., Herscovics, A., Howell, P.L.: Structure of Penicillium citrinum α1,2-mannosidase reveals the basis for differences in specificity of the endoplasmic reticulum and Golgi class I enzymes. J. Biol. Chem. 277, 5620–5630 (2002)

    Article  PubMed  CAS  Google Scholar 

  39. Schutzbach, J.S., Forsee, W.T.: Calcium ion activation of rabbit liver α1,2-mannosidase. J. Biol. Chem. 265, 2546–2549 (1990)

    PubMed  CAS  Google Scholar 

  40. Herscovics, A.: Structure and function of Class I α1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83, 757–762 (2001)

    Article  PubMed  CAS  Google Scholar 

  41. Tomiya, N., Lee, Y.C., Yoshida, T., Wada, Y., Awaya, J., Kurono, M., Takahashi, N.: Calculated two-dimensional sugar map of pyridylaminated oligosaccharides: elucidation of the jack bean α-mannosidase digestion pathway of Man9GlcNAc2. Anal. Biochem. 193, 90–100 (1991)

    Article  PubMed  CAS  Google Scholar 

  42. Herscovics, A., Romero, P.A., Tremblay, L.O.: The specificity of the yeast and human class I ER α1,2-mannosidases involved in ER quality control is not as strict previously reported. Glycobiology 12, 14G–15G (2002)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank members of my group, Dr. Peter Both, Natalie Öhl, Alba Hykollari and Dr. Katharina Paschinger, for supporting this work by helping with the expression, tryptic digestion and mass spectrometry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain B. H. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, I.B.H. The class I α1,2-mannosidases of Caenorhabditis elegans . Glycoconj J 29, 173–179 (2012). https://doi.org/10.1007/s10719-012-9378-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9378-1

Keywords

Navigation