Skip to main content

Advertisement

Log in

Galectin-3 is associated with prostasomes in human semen

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Galectin-3 is a β-galactoside-binding protein involved in immunomodulation, cell interactions, cancer progression, and pathogenesis of infectious organisms. We report the identification and characterization of galectin-3 in human semen. In the male reproductive tract, the ~30 kDa galectin-3 protein was identified in testis, epididymis, vas deferens, prostate, seminal vesicle, and sperm protein extracts. In seminal plasma, galectin-3 was identified in the soluble fraction and in prostasomes, cholesterol-rich, membranous vesicles that are secreted by the prostate and incorporated into seminal plasma during ejaculation. Two-dimensional immunoblot analysis of purified prostasomes identified five galectin-3 isoelectric variants with a pI range of 7.0 to 9.2. Affinity purification and tandem mass spectrometry of β-galactoside-binding proteins from prostasomes confirmed the presence of galectin-3 in prostasomes and identified a truncated galectin-3 variant. The intact galectin-3 molecule contains a carbohydrate recognition domain and a non-lectin domain that interacts with protein and lipid moieties. The identification of a monovalent galectin-3 fragment with conserved carbohydrate-binding activity indicates the functional relevance of this truncation and suggests a regulatory mechanism for galectin-3 in prostasomes. Surface biotinylation studies suggested that galectin-3 and the truncated galectin-3 variant are localized to the prostasome surface. Prostasomes are proposed to function in immunosuppression and regulation of sperm function in the female reproductive tract, are implicated in facilitating sexually-transmitted infections, and are indicated in prostate cancer progression. Given the overlap in functional significance, the identification of galectin-3 in prostasomes lays the groundwork for future studies of galectin-3 and prostasomes in reproduction, disease transmission, and cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BME:

β-mercaptoethanol

BSA:

bovine serum albumin

CRD:

carbohydrate recognition domain

Gal:

galactose

GalNAc:

N-acetylgalactosamine

GlcNAc:

N-acetylglucosamine

HRP:

horse radish peroxidase

kDa:

kilodaltons

PAGE:

polyacrylamide gel electrophoresis

PBS:

phosphate-buffered saline

pI:

isoelectric point

SDS:

sodium dodecyl sulfate

sulfo-NHS-LC-biotin:

sulfosuccinimidyl-6-(biotinamido) hexanoate

TBS:

Tris-buffered saline

References

  1. Dumic, J., Dabelic, S., Flogel, M.: Galectin-3: an open-ended story. Biochim. Biophys. Acta. 1760, 616–635 (2006)

    CAS  PubMed  Google Scholar 

  2. Rabinovich, G.A., Toscano, M.A.: Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Vasta, G.R.: Roles of galectins in infection. Nat. Rev. Microbiol. 7, 424–438 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. Bachhawat-Sikder, K., Thomas, C.J., Surolia, A.: Thermodynamic analysis of the binding of galactose and poly-N-acetyllactosamine derivatives to human galectin-3. FEBS Lett. 500, 75–79 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Guevremont, M., Martel-Pelletier, J., Boileau, C., Liu, F.T., Richard, M., Fernandes, J.C., Pelletier, J.P., Reboul, P.: Galectin-3 surface expression on human adult chondrocytes: a potential substrate for collagenase-3. Ann. Rheum. Dis. 63, 636–643 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Nieminen, J., St-Pierre, C., Sato, S.: Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses. J. Leukoc. Biol. 78, 1127–1135 (2005)

    CAS  PubMed  Google Scholar 

  7. Ellerhorst, J., Troncoso, P., Xu, X.C., Lee, J., Lotan, R.: Galectin-1 and galectin-3 expression in human prostate tissue and prostate cancer. Urol. Res. 27, 362–367 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Wollina, U., Schreiber, G., Gornig, M., Feldrappe, S., Burchert, M., Gabius, H.J.: Sertoli cell expression of galectin-1 and -3 and accessible binding sites in normal human testis and Sertoli cell only-syndrome. Histol. Histopathol. 14, 779–784 (1999)

    CAS  PubMed  Google Scholar 

  9. Burden, H.P., Holmes, C.H., Persad, R., Whittington, K.: Prostasomes—their effects on human male reproduction and fertility. Hum. Reprod. Update 12, 283–292 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Arienti, G., Carlini, E., Palmerini, C.A.: Fusion of human sperm to prostasomes at acidic pH. J. Membr. Biol. 155, 89–94 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Andersson, E., Sorensen, O.E., Frohm, B., Borregaard, N., Egesten, A., Malm, J.: Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum. Reprod. 17, 2529–2534 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Shetty, J., Diekman, A.B., Jayes, F.C., Sherman, N.E., Naaby-Hansen, S., Flickinger, C.J., Herr, J.C.: Differential extraction and enrichment of human sperm surface proteins in a proteome: identification of immunocontraceptive candidates. Electrophoresis 22, 3053–3066 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Massa, S.M., Cooper, D.N., Leffler, H., Barondes, S.H.: L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry 32, 260–267 (1993)

    Article  CAS  PubMed  Google Scholar 

  14. Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U S A 76, 4350–4354 (1979)

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, C.M., Coetzee, T., Pfeiffer, S.E.: Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J. Neurochem. 81, 993–1004 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Poliakov, A., Spilman, M., Dokland, T., Amling, C.L., Mobley, J.A.: Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69, 159–167 (2009)

    Article  PubMed  Google Scholar 

  17. Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G., Amigorena, S.: Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., Amigorena, S.: Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001)

    CAS  PubMed  Google Scholar 

  19. Gonzalez-Begne, M., Lu, B., Han, X., Hagen, F.K., Hand, A.R., Melvin, J.E., Yates, J.R.: Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 8, 1304–1314 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Simpson, R.J., Jensen, S.S., Lim, J.W.: Proteomic profiling of exosomes: current perspectives. Proteomics 8, 4083–4099 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Sullivan, R., Saez, F., Girouard, J., Frenette, G.: Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol. Dis. 35, 1–10 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Cowles, E.A., Agrwal, N., Anderson, R.L., Wang, J.L.: Carbohydrate-binding protein 35. Isoelectric points of the polypeptide and a phosphorylated derivative. J. Biol. Chem. 265, 17706–17712 (1990)

    CAS  PubMed  Google Scholar 

  23. Subhasitanont, P., Srisomsap, C., Punyarit, P., Svasti, J.: Proteomic studies of galectin-3 expression in human thyroid diseases by immunodection. Cancer Genomics and Proteomics 3, 389–394 (2006)

    CAS  Google Scholar 

  24. Huflejt, M.E., Turck, C.W., Lindstedt, R., Barondes, S.H., Leffler, H.: L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J. Biol. Chem. 268, 26712–26718 (1993)

    CAS  PubMed  Google Scholar 

  25. Utleg, A.G., Yi, E.C., Xie, T., Shannon, P., White, J.T., Goodlett, D.R., Hood, L., Lin, B.: Proteomic analysis of human prostasomes. Prostate 56, 150–161 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad, N., Gabius, H.J., Sabesan, S., Oscarson, S., Brewer, C.F.: Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Glycobiology 14, 817–825 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Ochieng, J., Green, B., Evans, S., James, O., Warfield, P.: Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim. Biophys. Acta. 1379, 97–106 (1998)

    CAS  PubMed  Google Scholar 

  28. van Berkel, P.H., Geerts, M.E., van Veen, H.A., Kooiman, P.M., Pieper, F.R., de Boer, H.A., Nuijens, J.H.: Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem. J. 312(Pt 1), 107–114 (1995)

    PubMed  Google Scholar 

  29. Cederfur, C., Salomonsson, E., Nilsson, J., Halim, A., Oberg, C.T., Larson, G., Nilsson, U.J., Leffler, H.: Different affinity of galectins for human serum glycoproteins: galectin-3 binds many protease inhibitors and acute phase proteins. Glycobiology 18, 384–394 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y.M.: Glycation ligand binding motif in lactoferrin. Implications in diabetic infection. Adv. Exp. Med. Biol. 443, 57–63 (1998)

    CAS  PubMed  Google Scholar 

  31. Karlsson, A., Follin, P., Leffler, H., Dahlgren, C.: Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 91, 3430–3438 (1998)

    CAS  PubMed  Google Scholar 

  32. Shimokawa Ki, K., Katayama, M., Matsuda, Y., Takahashi, H., Hara, I., Sato, H., Kaneko, S.: Matrix metalloproteinase (MMP)-2 and MMP-9 activities in human seminal plasma. Mol. Hum. Reprod. 8, 32–36 (2002)

    Article  PubMed  Google Scholar 

  33. Arienti, G., Carlini, E., Saccardi, C., Palmerini, C.A.: Role of human prostasomes in the activation of spermatozoa. J. Cell Mol. Med. 8, 77–84 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Kelly, R.W., Critchley, H.O.: Immunomodulation by human seminal plasma: a benefit for spermatozoon and pathogen? Hum. Reprod. 12, 2200–2207 (1997)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH HD50540 and a pilot study grant from the College of Medicine, University of Arkansas for Medical Sciences (UAMS) to A.B.D. The authors wish to thank the Proteomics Core Facility at UAMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan B. Diekman.

Additional information

Jennifer L. Jones and Sarika Saraswati contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J.L., Saraswati, S., Block, A.S. et al. Galectin-3 is associated with prostasomes in human semen. Glycoconj J 27, 227–236 (2010). https://doi.org/10.1007/s10719-009-9262-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9262-9

Keywords

Navigation