Skip to main content
Log in

Probing into the role of conserved N-glycosylation sites in the Tyrosinase glycoprotein family

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999)

    PubMed  CAS  Google Scholar 

  2. Kornfeld, R., Kornfeld, S.: Assembly of asparagines-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985). doi:10.1146/annurev.bi.54.070185.003215

    Article  PubMed  CAS  Google Scholar 

  3. Hounsell, E.F., Davies, M.J., Renouf, D.V.: O-linked protein glycosylation structure and function. Glycoconj. J. 13, 19–26 (1996). doi:10.1007/BF01049675

    Article  PubMed  CAS  Google Scholar 

  4. Takeda, J., Kinoshita, T.: GPI-anchor biosynthesis. Trends Biochem. Sci. 20, 367–371 (1995). doi:10.1016/S0968-0004(00)89078-7

    Article  PubMed  CAS  Google Scholar 

  5. Taylor, M.E., Drickamer, K.: Introduction to Glycobiology. Oxford University Press, Oxford (2003)

    Google Scholar 

  6. Varki, A., Kornfeld, S.: Structural studies of phosphorylated high mannose-type oligosaccharides. J. Biol. Chem. 255, 10847–10858 (1980)

    PubMed  CAS  Google Scholar 

  7. Trombetta, E.S., Helenius, A.: Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol. 8, 587–592 (1998). doi:10.1016/S0959-440X(98)80148-6

    Article  PubMed  CAS  Google Scholar 

  8. Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001). doi:10.1126/science.291.5512.2364

    Article  PubMed  CAS  Google Scholar 

  9. Dennis, J.W., Granovsky, M., Warren, C.E.: Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999)

    PubMed  CAS  Google Scholar 

  10. Dennis, J.W., Granovsky, M., Warren, C.E.: Protein glycosylation in health and disease. Bioessays 21, 412–421 (1999). doi:10.1002/(SICI)1521-1878(199905)21:5<412::AID-BIES8>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  11. Kukuruzinska, M.A., Lennon, K.: Protein N-glycosylation: molecular genetics and functional significance. Crit. Rev. Oral Biol. Med. 9, 415–448 (1998)

    Article  PubMed  CAS  Google Scholar 

  12. Helenius, A.: How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell 5, 253–265 (1994)

    PubMed  CAS  Google Scholar 

  13. Hurtley, S.M., Helenius, A.: Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5, 277–307 (1989). doi:10.1146/annurev.cb.05.110189.001425

    Article  PubMed  CAS  Google Scholar 

  14. Ellgaard, L., Helenius, A.: Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003). doi:10.1038/nrm1052

    Article  PubMed  CAS  Google Scholar 

  15. Gotte, G., Libonati, M., Laurents, D.V.: Glycosylation and specific deamidation of ribonuclease B affect the formation of three-dimensional domain swapped oligomers. J. Biol. Chem. 278, 46241–46251 (2003). doi:10.1074/jbc.M308470200

    Article  PubMed  CAS  Google Scholar 

  16. Bell, S.L., Xu, G., Khatri, I.A., Wang, R., Rahman, S., Forstner, J.F.: N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem. J. 373, 893–900 (2003). doi:10.1042/BJ20030096

    Article  PubMed  CAS  Google Scholar 

  17. Wujek, P., Kida, E., Walus, M., Wisniewski, K.E., Golabek, A.A.: N-glycosylation is crucial for folding, trafficking and stability of human tripeptidyl-peptidase I. J. Biol. Chem. 279, 12827–12839 (2004). doi:10.1074/jbc.M313173200

    Article  PubMed  CAS  Google Scholar 

  18. Mitra, N., Sinha, S., Ramya, T.N.C., Surolia, A.: N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem. Sci. 31, 156–163 (2006). doi:10.1016/j.tibs.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  19. del Marmol, V., Beermann, F.: Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165–168 (1996). doi:10.1016/0014-5793(96)00109-3

    Article  PubMed  CAS  Google Scholar 

  20. Morrison, R., Mason, K., Frost-Mason, S.: A cladistic analysis of the evolutionary relationships of the members of the tyrosinase gene family using sequence data. Pigment Cell Res. 7, 388–393 (1994). doi:10.1111/j.1600-0749.1994.tb00066.x

    Article  PubMed  CAS  Google Scholar 

  21. Thomson, T.M., Mattes, M.J., Roux, L., Old, L.J., Lloyd, K.O.: Pigmentation-associated glycoprotein of human melanomas and melanocytes: definition with a mouse monoclonal antibody. J. Invest. Dermatol. 85, 169–174 (1985). doi:10.1111/1523-1747.ep12276608

    Article  PubMed  CAS  Google Scholar 

  22. Mishima, Y.: Molecular and biological control of melanogenesis through tyrosinase genes and intrinsic and extrinsic regulatory factors. Pigment Cell Res. 7, 376–387 (1994). doi:10.1111/j.1600-0749.1994.tb00065.x

    Article  PubMed  CAS  Google Scholar 

  23. Beermann, F., Ruppert, S., Hummler, E., Bosch, F.X., Muller, G., Ruther, U., et al.: Rescue of the albino phenotype by introduction of a functional tyrosinase gene into mice. EMBO J. 9, 2819–2826 (1990)

    PubMed  CAS  Google Scholar 

  24. Vijayasaradhi, S., Bouchard, B., Houghton, A.N.: The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J. Exp. Med. 171, 1375–1380 (1990). doi:10.1084/jem.171.4.1375

    Article  PubMed  CAS  Google Scholar 

  25. Jackson, I.J., Chambers, D.M., Tsukamoto, K., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., et al.: A second tyrosinase-related protein, TRP-2 maps to and is mutated at the mouse slaty locus. EMBO J. 11, 527–535 (1992)

    PubMed  CAS  Google Scholar 

  26. Sato, S., Toyoda, R., Katsuyama, Y., Saiga, H., Numakunai, T., Ikeo, K., et al.: Structure and developmental expression of the ascidian TRP gene: insights into the evolution of pigment cell-specific gene expression. Dev. Dyn. 215, 225–237 (1999). doi:10.1002/(SICI)1097-0177(199907)215:3<225::AID-AJA5>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  27. Negroiu, G., Dwek, R.A., Petrescu, S.M.: Tyrosinase-related protein-2 and -1 are trafficked on distinct routes in B16 melanoma cells. Biochem. Biophys. Res. Commun. 328, 914–921 (2005). doi:10.1016/j.bbrc.2005.01.040

    Article  PubMed  CAS  Google Scholar 

  28. Negroiu, G., Branza-Nichita, N., Petrescu, A.J., Dwek, R.A., Petrescu, S.M.: Protein specific N-glycosylation of tyrosinase and tyrosine-related protein-1 in B16 mouse melanoma cells. Biochem. J. 344, 659–665 (1999). doi:10.1042/0264-6021:3440659

    Article  PubMed  CAS  Google Scholar 

  29. Branza-Nichita, N., Petrescu, A.J., Negroiu, G., Dwek, R.A., Petrescu, S.M.: N-glycosylation processing and glycoprotein folding: lessons from the tyrosinase-related proteins. Chem. Rev. 100, 4697–4711 (2000). doi:10.1021/cr990291y

    Article  PubMed  CAS  Google Scholar 

  30. Branza-Nichita, N., Negroiu, G., Petrescu, A.J., Garman, E.F., Platt, F.M., Wormald, M.R., et al.: Mutations at critical N-glycosylation sites reduce tyrosinase activity by altering folding and quality control. J. Biol. Chem. 275, 8169–8175 (2000). doi:10.1074/jbc.275.11.8169

    Article  PubMed  CAS  Google Scholar 

  31. Xu, Y., Bartido, S., Vijayasaradhi, S., Qin, J., Yang, G., Houghton, A.N.: Diverse roles of conserved asparagines-linked glycans sites on tyrosinase family glycoproteins. Exp. Cell Res. 267, 115–125 (2001). doi:10.1006/excr.2001.5232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avadhesha Surolia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, G., Sinha, S., Mitra, N. et al. Probing into the role of conserved N-glycosylation sites in the Tyrosinase glycoprotein family. Glycoconj J 26, 691–695 (2009). https://doi.org/10.1007/s10719-008-9213-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9213-x

Keywords

Navigation