Skip to main content

Advertisement

Log in

Functional and evolutionary inference in gene networks: does topology matter?

  • ORIGINAL PAPER
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The relationship between the topology of a biological network and its functional or evolutionary properties has attracted much recent interest. It has been suggested that most, if not all, biological networks are ‘scale free.’ That is, their connections follow power-law distributions, such that there are very few nodes with very many connections and vice versa. The number of target genes of known transcriptional regulators in the yeast, Saccharomyces cerevisiae, appears to follow such a distribution, as do other networks, such as the yeast network of protein–protein interactions. These findings have inspired attempts to draw biological inferences from general properties associated with scale-free network topology. One often cited general property is that, when compromised, highly connected nodes will tend to have a larger effect on network function than sparsely connected nodes. For example, more highly connected proteins are more likely to be lethal when knocked out. However, the correlation between lethality and connectivity is relatively weak, and some highly connected proteins can be removed without noticeable phenotypic effect. Similarly, network topology only weakly predicts the response of gene expression to environmental perturbations. Evolutionary simulations of gene-regulatory networks, presented here, suggest that such weak or non-existent correlations are to be expected, and are likely not due to inadequacy of experimental data. We argue that ‘top-down’ inferences of biological properties based on simple measures of network topology are of limited utility, and we present simulation results suggesting that much more detailed information about a gene’s location in a regulatory network, as well as dynamic gene-expression data, are needed to make more meaningful functional and evolutionary predictions. Specifically, we find in our simulations that: (1) the relationship between a gene’s connectivity and its fitness effect upon knockout depends on its equilibrium expression level; (2) correlation between connectivity and genetic variation is virtually non-existent, yet upon independent evolution of networks with identical topologies, some nodes exhibit consistently low or high polymorphism; and (3) certain genes show low polymorphism yet high divergence among independent evolutionary runs. This latter pattern is generally taken as a signature of positive selection, but in our simulations its cause is often neutral coevolution of regulatory inputs to the same gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert R, Jeong H, Barabási A-L (2000a) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  CAS  Google Scholar 

  • Albert R, Jeong H, Barabási A-L (2000b) Error and attack tolerance of complex networks (Correction). Nature 409:542

    Article  Google Scholar 

  • Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási A-L (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839–843

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–1867

    Article  PubMed  CAS  Google Scholar 

  • Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci U S A 101:1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  Google Scholar 

  • Batagelj V, Mrvar A (1998) Pajek—program for large network analysis. Connections 21:47–57

    Google Scholar 

  • Bergman A, Siegal ML (2003) Evolutionary capacitance as a general feature of complex gene networks. Nature 424:549–552

    Article  PubMed  CAS  Google Scholar 

  • Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH (2001) Genomic regulatory systems: development and evolution. Academic Press, San Diego, CA

    Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Zj, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H, (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  PubMed  CAS  Google Scholar 

  • Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  • Featherstone DE, Broadie K (2002) Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24:267–274

    Article  PubMed  CAS  Google Scholar 

  • Frank SA (1999) Population and quantitative genetics of regulatory networks. J Theor Biol 197:281–294

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  • Gavin A-C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A-M, Cruciat C-M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M-A, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Gertner J (2003) Social networks. The New York Times 12/14/03, section 6, p. 92

  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  PubMed  CAS  Google Scholar 

  • Guelzim N, Bottani S, Bourgine P, Képès F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63

    Article  PubMed  CAS  Google Scholar 

  • Guet CC, Elowitz MB, Hsing W, Leibler S (2002) Combinatorial synthesis of genetic networks. Science 296:1466–1470

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Conant GC, Wagner A (2004) Molecular evolution in large genetic networks: does connectivity equal constraint? J Mol Evol 58:203–211

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22:803–806

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Hartl DL, Taubes CH (1996) Compensatory nearly neutral mutations: selection without adaptation. J Theor Biol 182:303–309

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S-L, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sørensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  PubMed  CAS  Google Scholar 

  • Johnson NA, Porter AH (2000) Rapid speciation via parallel, directional selection on regulatory genetic pathways. J␣Theor Biol 205:527–542

    Article  PubMed  CAS  Google Scholar 

  • Johnson NA, Porter AH (2005) Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica, this issue

  • Kim PM, Tidor B (2003) Limitations of quantitative gene regulation models: a case study. Genome Res 13:2391–2395

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  • Levesque MP, Benfey PN (2004) Systems biology. Curr Biol 14:R179–R180

    Article  PubMed  CAS  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain P-O, J-Han DJ, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual J-F, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, van den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C elegans. Science 303:540–543

    Article  PubMed  CAS  Google Scholar 

  • Li W-H (1997) Molecular evolution. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 100:11980–11985

    Article  PubMed  CAS  Google Scholar 

  • Phillips PC, Otto SP, Whitlock MC (2000) Beyond the average: the evolutionary importance of gene interactions and variability of epistatic effects, in Epistasis and the evolutionary process, edited by Wolf JB, Brodie ED, III, Wade MJ. Oxford University Press, New York, NY

    Google Scholar 

  • Porter AH, Johnson NA (2002) Speciation despite gene flow when developmental pathways evolve. Evolution 56:2103–2111

    PubMed  Google Scholar 

  • Promislow D (2005) A regulatory network analysis of phenotypic plasticity in yeast. Am Nat 165:515–523

    Article  PubMed  Google Scholar 

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353

    Article  PubMed  Google Scholar 

  • Pržulj N, Wigle DA, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20:340–348

    Article  PubMed  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  PubMed  CAS  Google Scholar 

  • Siegal ML, Bergman A (2002) Waddington’s canalization revisited: Developmental stability and evolution. Proc Natl Acad Sci U S A 99:10528–10532

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman and Company, New York, NY

    Google Scholar 

  • Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci U S A 102:4221–4224

    Article  PubMed  CAS  Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3:109–119

    Article  PubMed  CAS  Google Scholar 

  • von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417:399–403

    Article  Google Scholar 

  • Wagner A (1996) Does evolutionary plasticity evolve? Evolution 50:1008–1023

    Article  Google Scholar 

  • Wagner A (2003) Does selection mold molecular networks? Sci. STKE 2003:341

  • Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc R Soc Lond B Biol Sci 268:1803–1810

    Article  CAS  Google Scholar 

  • Wuchty S, Oltvai ZN, Barabási A-L (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35:176–179

    Article  PubMed  CAS  Google Scholar 

  • Yook S-H, Oltvai ZN, Barabási A-L (2004) Functional and topological characterization of protein interaction networks. Proteomics 4:928–942

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Luscombe NM, Qian J, Gerstein M (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 19:422–427

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E (1997) Neutral and nonneutral mutations: the creative mix—evolution of complexity in gene interaction systems. J Mol Evol 44:S2–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Norman Johnson and Matthew Hahn for helpful comments on the manuscript. During part of this work, M.L.S. was supported by an NIH NRSA postdoctoral fellowship, and thanks Bruce Baker for his support. A.B. thanks Eric and Illeana Benhamou and The Benhamou Global Ventures, and The Rockefeller Foundation Creativity & Culture Program, for their generous and continual support. D.E.L.P.’s contribution to this work was supported by the National Science Foundation under Grant No. 0214022, and by the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Siegal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegal, M.L., Promislow, D.E.L. & Bergman, A. Functional and evolutionary inference in gene networks: does topology matter?. Genetica 129, 83–103 (2007). https://doi.org/10.1007/s10709-006-0035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0035-0

Keywords

Navigation