Skip to main content

Advertisement

Log in

A critical look at representations of urban areas in global maps

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

According to the UN, the number of urban dwellers is expected to increase from roughly 3.2 billion today to more than 4.9 billion by 2030. An accurate and regularly updated estimate of the extent and spatial distribution of urban land is an important first step in our search for realistic responses to the ecological and social consequences of what promises to be the most rapid urbanization in world history. By employing circa-2000 satellite remote sensing imagery, geographic information systems, and census data, six groups from government and academia in both the EU and the US have created global maps that can be used to describe urban land. We compare these maps from global to sub-national scales, for the first time applying Discrete Global Grids to the problem of global-scale map comparison. Although most of these maps share common data inputs, they differ by as much as an order of magnitude in their estimates of the total areal extent of the Earth’s urban land (from 0.27 to 3.52 million km2). A sub-national analysis of the spatial distribution of urban land reveals that inter-map correlations are highest in North America ( \( \ifmmode\expandafter\bar\else\expandafter\=\fi{r} \) = 0.90), intermediate in Europe, South and Central America, and Sub-Saharan Africa (\( \ifmmode\expandafter\bar\else\expandafter\=\fi{r} \) = 0.78), and lowest in Asia (\( \ifmmode\expandafter\bar\else\expandafter\=\fi{r} \) = 0.63). Across most regions, our analysis uncovers a degree of variance that is high enough to call into question the consistency of each group’s approach to urban land, pointing to the need for both a common urban taxonomy and a global urban assessment effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The level of urbanization describes the fraction of a population living in urban areas. Urban expansion refers to an increase in the areal extent of urban land.

  2. The DMPS-OLS satellite is sensitive to radiation in the visible-near infrared region of the electromagnetic spectrum (0.44–0.94 μm). Light intensity is encoded in 6-bit digital numbers.

References

  • Alberti, M. (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2), 168–192.

    Article  Google Scholar 

  • Angel, S., Sheppard, S. C., & Civco D. L. (2005). The dynamics of global urban expansion. Washington, DC: The World Bank, available online at: http://www.williams.edu/Economics/UrbanGrowth/WorkingPapers.htm, last accessed April 15, 2007.

  • Bartholome, E., & Belward, A. S. (2005). GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing 26(9), 1959–1977.

    Article  Google Scholar 

  • Bhaduri, B., Bright, E., Coleman, P., & Dobson, J. (2002). LandScan: Locating people is what matters. Geoinfomatics, 5, 34–37.

    Google Scholar 

  • Bourne, J. (2000). Louisiana’s vanishing wetlands: Going, going…. Science, 289, 1860–1863.

    Article  Google Scholar 

  • Brockerhoff, M. (2000). Urbanizing world. Population Bulletin, 55, 3.

    Google Scholar 

  • Brockerhoff, M, & Brennan, E. (1998). The poverty of cities in developing regions. Population and Development Review, 24(1), 75–114.

    Article  Google Scholar 

  • Burgess, R. (2000), The compact city debate: A global perspective. In M. Jenks & R. Burgess (Eds.), Compact cities: Sustainable urban forms for developing countries. London and New York: Spon Press.

    Google Scholar 

  • Calbo, J., Pan, W., Webster, M., Prinn, R. G., & McRae, G. J. (1998). Parameterization of urban sub-grid scale processes in global atmospheric chemistry models. Journal of Geophysical Research, 103, 3437–3467.

    Article  Google Scholar 

  • Castells, M. (1996). The rise of the network society. Malden, Massachusetts: Blackwell Publishers.

    Google Scholar 

  • Center for International Earth Science Information Network (CIESIN), Columbia University; International Food Policy Research Institute (IFPRI); The World Bank; and Centro Internacional de Agricultura Tropical (CIAT) (2004). Global Rural–Urban Mapping Project (GRUMP), Alpha Version: Urban Extents. Socioeconomic Data and Applications Center (SEDAC), Columbia University. Palisades, New York. Available at http://www.sedac.ciesin.columbia.edu/gpw, last accessed April 15, 2007.

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Article  Google Scholar 

  • Cohen, B. (2004). Urban growth in developing countries: A review of current trends and a caution regarding existing forecasts. World Development, 32(1), 23–51.

    Article  Google Scholar 

  • Danko, D. M. (1992). The digital chart of the world project. Photogrammetric Engineering and Remote Sensing, 58(8), 1125–1128.

    Google Scholar 

  • Davies, R., Orme, C., Olson, V., Thomas, G., Ross, S., Ding, T., Rasmussen, P., Strattersfield, A., Bennett, P., Blackburn, T., Owens, I., & Gaston, K. (2006). Human impacts and the global distribution of extinction risk. Proceedings of the Royal Society B, 273, 2127–2133.

    Article  Google Scholar 

  • Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., & Worley, B. A. (2000). Landscan: A global population database for estimating populations at risk. Photogrammetric Engineering and Remote Sensing, 66(7), 849–857.

    Google Scholar 

  • Doll, C. N. H., Muller, J. P., & Morley, J. G. (2006). Mapping regional economic activity from night-time light satellite imagery. Ecological Economics, 57(1), 75–92.

    Article  Google Scholar 

  • Douglas, I. (1994). Human settlements. In W. B. Meyer & B. L. Turner II (Eds.), Changes in land use and land cover: A global perspective. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Ehrlich, P. R. (1991). Population diversity and the future of ecosystems. Science, 254, 175.

    Article  Google Scholar 

  • El Araby, M. (2002). Urban growth and environmental degradation. Cities, 19, 389–400.

    Article  Google Scholar 

  • Elvidge, C. D., Imhoff, M. L., Baugh, K. E., Hobson, V. R., Nelson, I., Safran, J., Dietz, J. B., & Tuttle, B. T. (2001). Nighttime lights of the world: 1994–95. ISPRS Journal of Photogrammetry and Remote Sensing, 56(2), 81–99.

    Article  Google Scholar 

  • Elvidge, C., Milesi, C., Dietz, J., Tuttle, B., Sutton, P., Nemani, R., & Vogelmann, J. (2004). US constructed area approaches the size of Ohio. EOS: Transactions of the American Geophysical Union, 85(24), 233.

    Google Scholar 

  • Folke, C., Jansson, A., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities. Ambio, 26, 167–172.

    Google Scholar 

  • Friedl, M., McIver, D., Hodges, J., Zhang, X., Muchoney, D., Strahler, A., Woodcock, A., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., & Schaaf, C. (2002). Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83, 287–302.

    Article  Google Scholar 

  • Giri, C., Zhu, Z. L., & Reed, B. (2005). A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sensing of the Environment, 94(1), 123–132.

    Article  Google Scholar 

  • Goldewijk, K. (2001). Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochemical Cycles, 15(2), 417–434.

    Article  Google Scholar 

  • Goldewijk, K. (2005). Three centuries of global population growth: A spatially referenced population density database for 1700–2000. Population and Environment, 26(5), 343–367.

    Article  Google Scholar 

  • Goldewijk, K., & Ramankutty, N. (2004). Land cover change over the last three centuries due to human activities: The availability of new global data sets. Geojournal, 61, 335–344.

    Article  Google Scholar 

  • Global Land Cover Facility, website: http://www.glcf.umiacs.umd.edu.

  • Greyner, R., Orme, C., Jackson, S., Thomas, G., Davies, R., Davies, T., Jones, K., Olson, V., Ridgely, R., Rasmussen, P., Ding, T., Bennett, P., Blackburn, T, Gaston, K., Gittleman, J., & Owens, I. (2006). Global distribution and conservation of rare and threatened vertebrates. Nature, 444(2), 93–96.

    Article  Google Scholar 

  • Grübler, A. (1994). Technology. In W. B. Meyer & B. L. Turner II (Eds.), Changes in land use and land cover: A global perspective. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hansen, M. C., & Reed, B. (2000). A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. International Journal of Remote Sensing, 21, 1365–1373.

    Article  Google Scholar 

  • Henderson, M., Yeh, E. T., Gong, P., Elvidge, C., & Baugh, K. (2003). Validation of urban boundaries derived from global night-time satellite imagery. International Journal of Remote Sensing, 24(3), 595–609.

    Article  Google Scholar 

  • Herold, M., Woodcock, C., Gregorio, A., Mayaux, P., Belward, A., Latham, J., & Schmullius, C. (2006). A joint initiative for harmonization and validation of land cover datasets. IEEE Transactions on Geosciences and Remote Sensing, 44(7), 1719–1727.

    Article  Google Scholar 

  • Imhoff, M. L., Lawrence, W. T., Stutzer, D. C., & Elvidge, C. D. (1997). A technique for using composite DMSP/OLS “City Lights” satellite data to accurately map urban areas. Remote Sensing of Environment, 61, 361–370.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change. (2007). Working Group II Report: Climate Change 2007, Impacts, Adaptation and Vulnerability—Summary for Policymakers, IPCC Secretariat, Geneva, Switzerland.

  • Jung, M., Henkel, K., Herold, M., & Churkina, G. (2006). Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101, 534–553.

    Article  Google Scholar 

  • Kaye, J., Groffman, P. M., Grumm, N. B., Baker, L. A., & Pouyat, R. V. (2006). A distinct urban biogeochemistry? Trends in Ecology and Evolution, 21(4), 192–198.

    Article  Google Scholar 

  • Keiser, J., Utzinger, J., De Castro, M. C., Smith, T. A., Tanner, M., & Singer, B. H. (2004). Urbanization in sub-Saharan Africa and implication for malaria control. American Journal of Tropical Medicine and Hygiene, 71(2), 118–127.

    Google Scholar 

  • Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30, 81–89.

    Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics 33, 169–174.

    Google Scholar 

  • Latifovic, R., & Olthof, I. (2004). Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sensing of Environment, 90, 153–165.

    Article  Google Scholar 

  • Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, J, Yang, L., & Merchant, J. W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. International Journal of Remote Sensing, 21, 1303–1330.

    Article  Google Scholar 

  • Massey, D. (1996). The age of extremes: Concentrated affluence and poverty in the twenty-first century. Demography, 33(4), 395–412.

    Article  Google Scholar 

  • Massey, D. (2005). Strangers in a strange land: Humans in an urbanizing world. New York, NY: W.W. Norton & Company.

    Google Scholar 

  • Mayaux, P., Eva, H., Gallego, J., Strahler, A. H., Herold, M., Agrawal, S., Naumov, S., Miranda, E., Bella, C., Ordoyne, C., Kopin, Y., & Roy, P. (2006). Validation of the Global Land Cover 2000 map. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1728–1739.

    Article  Google Scholar 

  • McGranahan, G., & Satterthwaite, D. (2000). Environmental health of ecological sustainability: Reconciling the brown and green agendas in urban development. In C. Pugh (Ed.), Sustainable cities in developing countries: Theory and practice at the millennium (pp. 53–72). London, UK: Earthscan Publishers.

    Google Scholar 

  • Milesi, C., Elvidge, C. D., Nemani, R. R., & Running, S. W. (2003). Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sensing of the Environment, 86(3), 401–410.

    Article  Google Scholar 

  • Monserud, R, & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modeling, 62, 275–293.

    Article  Google Scholar 

  • Montgomery, M., Stren, R., Cohen, B., & Reed, H. (2003). Cities transformed: Demographic change and its implications in the developing world. Washington, DC: National Academies Press.

    Google Scholar 

  • National Geophysical Data Center. (2007). Nighttime Lights data available at: http://www.ngdc.noaa.gov/dmsp/sensors/ols.html.

  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24.

    Google Scholar 

  • Ozdogan, M., & Woodcock, C. E. (2006). Resolution dependent errors in remote sensing of cultivated areas. Remote Sensing of the Environment, 103(2), 203–217.

    Article  Google Scholar 

  • Peters-Lidard, C. D., Kumar, S., Tian, Y., Eastman, J. L., & Houser, P. (2004). Global urban-scale land-atmosphere modeling with the land information system. Symposium on Planning, Nowcasting, and Forecasting in the Urban Zone, 84th American Meteorological Society Annual Meeting, 11–15 January 2004, Seattle, Washington, USA.

  • Pickett, S., Burch, W., Dalton, S., Foresman, T., Grove, M., & Rowntree, R. (1997). A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosystems, 1, 186–199.

    Google Scholar 

  • Quigley, J. M. (1998). Urban diversity and economic growth. Journal of Economic Perspectives, 37, 426–434.

    Google Scholar 

  • Rees, W. E. (1992). Ecological footprint and appropriated carrying capacity: What urban economics leaves out. Environment and Urbanization, 4, 121–130.

    Article  Google Scholar 

  • Sahr, K., White, D., & Kimerling, A. (2003). Geodesic discrete global grid systems. Cartography and Geographic Information Science, 30(2), 121–134.

    Article  Google Scholar 

  • Sassen, S. (1994). Cities in a world economy. Thousand Oaks, CA: Pine Forge-Sage Press.

    Google Scholar 

  • Schneider, A., Friedl, M. A., Mciver, D. K., & Woodcock, C. E. (2003). Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data. Photogrammetric Engineering and Remote Sensing 69(12), 1377–1386.

    Google Scholar 

  • Schneider, A., Friedl, M. A., & Woodcock, C. E. (2005). Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data: Global results. In Proceedings of the 5th International Symposium of Remote Sensing of Urban Areas, 14–16 March, Tempe, Arizona.

  • Schneider, A., & Woodcock C. E. (in press). Compact, dispersed, fragmented, extensive? A comparison of urban expansion in 25 global cities using remotely sensed data, pattern metrics and census information. Urban Studies.

  • See, L. M., & Fritz, S. (2006). A method to compare and improve land cover datasets: Application to the GLC-2000 and MODIS land cover products. IEEE Transactions in Geoscience and Remote Sensing, 44(7), 1740–1746.

    Article  Google Scholar 

  • Small, C., & Cohen, J. (2004). Continental physiography, climate, and the global distribution of human population. Current Anthropology, 45(2), 269–277.

    Article  Google Scholar 

  • Small, C., Pozzi, F., & Elvidge, C. D. (2005). Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sensing of the Environment, 96, 277–291.

    Article  Google Scholar 

  • Stren, R., White, R., & Whitney, J. (1992). Sustainable cities: Urbanization and the environment in international perspective. Boulder, CO: Westview Press.

    Google Scholar 

  • Sutton, P., Roberts, D., Elvidge, C., & Meij, H. (1997). A comparison of night-time satellite imagery and population density for the continental United States. Photogrammetric Engineering and Remote Sensing, 63, 1303–1313.

    Google Scholar 

  • Tatem, A. J., Noor, A. M., & Hay, S. I. (2005). Assessing the accuracy of satellite derived global and national urban maps in Kenya. Remote Sensing of the Environment, 96(1), 87–97.

    Article  Google Scholar 

  • Travis, J. (2005). Scientists’ fears come true as hurricane floods New Orleans. Science, 309, 1656–1659.

    Article  Google Scholar 

  • Tucker, C. J., Grant, D. M., & Dykstra, J. D. (2004). NASA’s global orthorectified Landsat data set. Photogrammetric Engineering and Remote Sensing, 70, 313–322.

    Google Scholar 

  • Tuttle, B. (2007). Global mapping of impervious surface area. San Francisco, CA: 2007 Annual Meeting of the Association of American Geographers.

    Google Scholar 

  • Unger, J., Sumeghy, Z., Bottyan, Z., & Musci, L. (2001). Land use and meteorological aspects of the urban heat island. Meteorological Applications, 8, 189–194.

    Article  Google Scholar 

  • United Nations Human Settlements Programme (UN-HABITAT). (2003). The challenge of slums: Global report on human settlements, 2003 (310 pp.). London, United Kingdom: Earthscan Publications.

  • UN Population Division. (2005). United Nations World Urbanization ProspectsThe 2005 Revision, online at http://www.esa.un.org/unup, last accessed April 15, 2007.

  • UN Statistics Division (2007). http://www.unstats.un.org/unsd/methods/m49/m49.htm.

  • Utzinger, J., & Keiser, J. (2006). Urbanization and tropical health – then and now. Annals of Tropical Medicine and Parasitology, 100(5–6), 517–533.

    Article  Google Scholar 

  • Van Vliet, W. (2002). Cities in a globalizing world: From engines of growth to agents of change. Environment and Urbanization, 14, 31–40.

    Article  Google Scholar 

  • Welch, R. (1980). Monitoring urban population and energy utilization patterns from satellite data. Remote Sensing of Environment, 9, 1–9.

    Article  Google Scholar 

  • Wratten, E. (1995). Conceptualizing urban poverty. Environment and Urbanization, 7, 11–38.

    Article  Google Scholar 

  • Yang, L., Huange, C., Homer, C., Wylie, B., & Coan, M. (2003). An approach for mapping large-area impervious surfaces: Synergistic use of Landsat 7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2), 230–240.

    Google Scholar 

  • Zhang, X. Y., Friedl, M. A., Schaaf, C. B., Strahler, A. H., & Schneider, A. (2004). The footprint of urban climates on vegetation phenology. Geophysical Research Letters, 31(12), L12209.

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible in part by the Department of Energy Computational Science Graduate Fellowship (GSGF) and Princeton University’s Office of Population Research (OPR). We’d like to thank Professor Shlomo Angel of New York University for his thoughtful comments and suggestions at all stages of this work. Thanks also to Professors Doug Massey and Burt Singer of Princeton’s Office of Population Research for their comments, as well as the recommendations of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Potere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potere, D., Schneider, A. A critical look at representations of urban areas in global maps. GeoJournal 69, 55–80 (2007). https://doi.org/10.1007/s10708-007-9102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-007-9102-z

Keywords

Navigation