Skip to main content
Log in

Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base superalloys

  • IUTAM Baltimore
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In advanced engineering alloys where inclusions and pores are minimized during processing, the initiation of cracks due to cyclic loading shifts to intrinsic microstructural features. Criteria for the identification of crack initiation sites, defined using elastic-plastic loading parameters and twin boundary length, have been developed and applied to experimental datasets following cyclic loading. The criteria successfully quantify the incidence of experimentally observed cracks. Statistical microstructural volume elements are defined using a convergence approach for two nickel-base superalloys, IN100 and René 88DT. The material element that captures the fatigue crack-initiating features in René 88DT is smaller than IN100 due to a combination of smaller grain size and higher twin density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bayerlein M, Mughrabi H (1992) Fatigue crack initiation and early crack growth in copper polycrystals—effects of temperature and environment. Short Fatigue Cracks, ESIS 13, Mech. Eng. Publications, pp 55–82

  • Boettner RC, McEvily AJ Jr, Liu YC (1964) On the formation of fatigue cracks at twin boundaries. Philos Mag 10(103):95–106. doi:10.1080/14786436408224210

    Article  Google Scholar 

  • Cerrone A, Spear A, Tucker J, Stein CA, Rollett AD, Ingraffea AR (2013) Modeling crack nucleation at coherent twin boundaries in nickel—modeling crack nucleation at coherent twin boundaries in nickel-based superalloys. Mater Sci Technol (MS&T) 1649

  • Cowles BA (1989) High cycle fatigue in aircraft gas turbine–an industry perspective. Int J Fract 80(2–3):147–163

    Google Scholar 

  • Davidson DL, Tryon RG, Oja M, Matthews R, Ravi Chandran KS (2007) Fatigue crack initiation in waspaloy at 20 \(^{circ}\)C. Metall Mater Trans A 38(13):2214–2225. doi:10.1007/s11661-007-9178-6. ISSN 1543-1940

  • Di Gioacchino F, Quinta da Fonseca J (2013) Plastic strain mapping with sub-micron resolution using digital image correlation. Exp Mech 53(5):743–754

    Article  Google Scholar 

  • Echlin MLP, Pollock TM (2013) A statistical sampling approach for measurement of fracture toughness parameters in a 4330 steel by 3-D femtosecond laser-based tomography. Acta Mater 61(15):5791–5799. doi:10.1016/j.actamat.2013.06.023

    Article  Google Scholar 

  • Echlin MLP, Husseini NS, Nees JA, Pollock TM (2011) A new femtosecond laser-based tomography technique for multiphase materials. Adv Mater 23(20):2339–2342. doi:10.1002/adma.201003600. ISSN 1521-4095

  • Echlin MLP, Lenthe WC, Pollock TM (2014) Three-dimensional sampling of material structure for property modeling and design. Integr Mater Manuf Innov 3(1):21. doi:10.1186/s40192-014-0021-9. ISSN 2193-9764

  • Echlin MLP, Straw M, Randolph S, Filevich J, Pollock TM (2015) The tribeam system: femtosecond laser ablation in situ SEM. Mater Charact 100:1–12. doi:10.1016/j.matchar.2014.10.023. ISSN 1044-5803

  • Ghosh S, Weber G, Keshavarz S (2015) Multiscale modeling of polycrystalline nickel-based superalloys accounting for subgrain microstructures. Mech Res Commun. doi:10.1016/j.mechrescom.2015.12.001. ISSN 0093-6413

  • Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534. doi:10.1016/j.engfracmech.2006.12.021. ISSN 0013-7944

  • Groeber M, Haley BK, Uchic MD, Dimiduk DM, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Charact 57(4–5):259–273. doi:10.1016/j.matchar.2006.01.019. ISSN 1044-5803

  • Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: synthetic structure generation. Acta Mater 56(6):1274–1287

    Article  Google Scholar 

  • Heinz A, Neumann P (1990) Crack initiation during high cycle fatigue of an austenitic steel. Acta Metall Mater 38(10):1933–1940. doi:10.1016/0956-7151(90)90305-Z. ISSN 0956-7151

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357–372. doi:10.1016/0022-5096(63)90036-X. ISSN 0022-5096

  • Jiang R, Pierron F, Octaviani S, Reed PAS (2017) Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by SEM-DIC in an advanced disc alloy. Mater Sci Eng A 699:128–144. doi:10.1016/j.msea.2017.05.091. ISSN 0921-5093

  • Jiang J, Zhang T, Dunne FPE, Britton TB (2016) Deformation compatibility in a single crystalline Ni superalloy. In: Proc. R. Soc. A, vol 472

  • Kammers AD, Daly S (2013) Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp Mech 53(8):1333–1341. doi:10.1007/s11340-013-9734-5. ISSN 0014-4851

  • Krueger DD, Kissinger RD, Menzies RG (1992) Development and introduction of a damage tolerant high temperature nickel-base disk alloy. In: Antolovich SD (ed) Superalloys. TMS-AIME, Warrendale, pp 277–286

    Google Scholar 

  • Kumar A, Torbet CJ, Pollock TM, Jones JW (2010) In situ characterization of fatigue damage evolution in a cast al alloy via nonlinear ultrasonic measurements. Acta Mater 58(6):2143–2154

    Article  Google Scholar 

  • Laird C, Duquette DJ (1972) Mechanisms of fatigue crack nucleation. Corrosion Fatigue, National Association of Corrosion Engineers, pp 88–117

    Google Scholar 

  • Lenthe WC, Stinville JC, Echlin MP, Pollock TM (2016) Statistical assessment of fatigue-initiating microstructural features in a polycristalline disk alloy. Superalloys 2016:569–577

    Google Scholar 

  • Li K, Ashbaugh NE, Rosenberger AH (2004) Crystallographic initiation of nickel-base superalloy IN100 at RT and 538\(^{\circ }\)C under low cycle fatigue conditions. Superalloys 2004:251

    Google Scholar 

  • Lin MR, Fine ME, Mura T (1986) Fatigue crack initiation on slip bands: theory and experiment. Acta Metall 34(4):619–628. doi:10.1016/0001-6160(86)90177-X. ISSN 0001-6160

  • McDowell DL, Ghosh S, Kalidindi SR (2011) Representation and computational structure-property relations of random media. JOM 63(3):45–51. doi:10.1007/s11837-011-0045-y. ISSN 1543-1851

  • Miao J, Pollock TM, Jones JW (2008) Fatigue crack initiation in nickel-based superalloy rené 88 DT at 593 C. In: Caron P, Gabb TP, Fahrmann MG, Huron ES, Woodard SA, Reed RC, Green KA (eds) Superalloys. TMS, Warrendale, pp 589–597

    Google Scholar 

  • Miao J, Pollock TM, Wayne Jones J (2009) Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater 57(20):5964–5974. doi:10.1016/j.actamat.2009.08.022

    Article  Google Scholar 

  • Miao J, Pollock TM, Wayne Jones J (2012) Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater 60(6–7):2840–2854. doi:10.1016/j.actamat.2012.01.049. ISSN 1359-6454

  • Milligan WW, Orth E, Schirra J, Savage M (2004) Effects of microstructure on the high temperature constitutive behavior of IN100. Superalloys 2004:331–339

    Google Scholar 

  • Mineur M, Villechaise P, Mendez J (2000) Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel. Mater Sci Eng A 286(2):257–268. doi:10.1016/S0921-5093(00)00804-2. ISSN 0921-5093

  • Morrison DJ, Moosbrugger JC (1997) Effects of grain size on cyclic plasticity and fatigue crack initiation in nickel. Int J Fatigue 19(93):51–59. doi:10.1016/S0142-1123(97)00034-0. ISSN 0142-1123

  • Mughrabi H (2006) Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int J Fatigue 28:501–508

    Article  Google Scholar 

  • Mughrabi H (2009) Cyclic slip irreversibilities and the evolution of fatigue damage. Metall Mater Trans A 40(6):1257–1279. doi:10.1007/s11661-009-9839-8

    Article  Google Scholar 

  • Mura T, Nakasone Y (1990) A theory of fatigue crack initiation in solids. J Appl Mech 57(1):1–6

    Article  Google Scholar 

  • Niezgoda SR, Turner DM, Fullwood DT, Kalidindi SR (2010) Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics. Acta Mater 58(13):4432–4445. doi:10.1016/j.actamat.2010.04.041. ISSN 1359-6454

  • Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112–132. doi:10.1016/j.probengmech.2005.07.007. ISSN 0266-8920

  • Pineau A, Antolovich SD (2009) High temperature fatigue of nickel-base superalloys–a review with special emphasis on deformation modes and oxidation. Eng Fail Anal 16(8):2668–2697. doi:10.1016/j.engfailanal.2009.01.010. ISSN 1350-6307. Special issue honouring Professor Manuel Elices on the occasion of his 70th birthday

  • Polak J (2003) Cyclic deformation, crack initiation, and low cycle fatigue. Compr Struct Inegrity 4:1–39

    Google Scholar 

  • Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power 22(2):361–374

    Article  Google Scholar 

  • Qidwai SM, Turner DM, Niezgoda SR, Lewis AC, Geltmacher AB, Rowenhorst DJ, Kalidindi SR (2012) Estimating the response of polycrystalline materials using sets of weighted statistical volume elements. Acta Mater 60:5284–5299. doi:10.1016/j.actamat.2012.06.026. ISSN 1359-6454

  • Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge. ISBN 9781139458634

  • Rosca D, Morawiec A, De Graef M (2014) A new method of constructing a grid in the space of 3D rotations and its applications to texture analysis. Modell Simul Mater Sci Eng 22(7):075013

    Article  Google Scholar 

  • Shan Z, Gokhale AM (2002) Representative volume element for non-uniform micro-structure. Comput Mater Sci 24(3):361–379. doi:10.1016/S0927-0256(01)00257-9. ISSN 0927-0256

  • Shyam A, Torbet CJ, Jha SK, Larsen JM, Caton MJ, Szczepanski CJ, Pollock TM, Jones JW (2004) Development of ultrasonic fatigue for rapid, high temperature fatigue studies in turbine engine materials. Superalloys 2004:259–268

    Google Scholar 

  • Stein C, Lee S, Rollett A (2012) An analysis of fatigue crack initiation using 2D orientation mapping and full-field simulation of elastic stress response, superalloys. Superalloy 2012

  • Stein CA, Cerrone A, Ozturk T, Lee S, Kenesei P, Tucker H, Pokharel R, Lind J, Hefferan C, Suter RM, Ingraffea AR, Rollett AD (2014) Fatigue crack initiation, slip localization and twin boundaries in a nickel-based superalloy. Curr Opin Solid State Mater Sci 18(4):244–252. doi:10.1016/j.cossms.2014.06.001. ISSN 1359-0286, Slip Localization and Transfer in Deformation and Fatigue of Polycrystals

  • Stinville JC, Echlin MP, Texier D, Bridier F, Bocher P, Pollock TM (2015a) Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Exp Mech 1–20: doi:10.1007/s11340-015-0083-4. ISSN 1741-2765

  • Stinville JC, Lenthe WC, Miao J, Pollock TM (2015b) A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater 103:461–473. doi:10.1016/j.actamat.2015.09.050. ISSN 13596454

  • Stinville JC, Vanderesse N, Bridier F, Bocher P, Pollock TM (2015c) High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater 98:29–42. doi:10.1016/j.actamat.2015.07.016. ISSN 1359-6454

  • Stinville JC, Lenthe WC, Miao J, Pollock TM (2016) A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater 103:461–473. doi:10.1016/j.actamat.2015.09.050. ISSN 1359-6454

  • Swaminathan S, Ghosh S, Pagano NJ (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: part I-without damage. J Compos Mater 40(7):583–604

    Article  Google Scholar 

  • Tanaka K, Mura T (1981) A dislocation model for fatigue crack initiation. J Appl Mech 48(1):97–103

    Article  Google Scholar 

  • Texier D, Gómez AC, Pierret S, Franchet J-M, Pollock TM, Villechaise P, Cormier J (2016) Microstructural features controlling the variability in low-cycle fatigue properties of alloy inconel 718DA at intermediate temperature. Metall Mater Trans A 47(3):1096–1109. doi:10.1007/s11661-015-3291-8. ISSN 1543-1940

  • Thompson N, Wadsworth N, Louat N (1956) Xi. The origin of fatigue fracture in copper. Philos Mag 1(2):113–126. doi:10.1080/14786435608238086

    Article  Google Scholar 

  • Vic-2D (2009) software. Correlated Solutions Inc., Columbia, SC

  • Wong SL, Dawson PR (2010) Influence of directional strength-to-stiffness on the elastic-plastic transition of fcc polycrystals under uniaxial tensile loading. Acta Mater 58(5):1658–1678. doi:10.1016/j.actamat.2009.11.009. ISSN 1359-6454

  • Yeratapally SR, Glavicic MG, Hardy M, Sangid MD (2016) Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation. Acta Mater 107:152–167. doi:10.1016/j.actamat.2016.01.038. ISSN 1359-6454

Download references

Acknowledgements

The authors gratefully acknowledge the support of GE Global Research and appreciate useful discussions with J. Laflen, A. Loghin, J. Marte, M. Groeber, M. Jackson and M. Uchic. This work has been supported through a Grant No. FA9550-12-1-0445 to the Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University, awarded by the AFOSR/ Aerospace Materials for Extreme Environments Program (Program Manager Dr. Ali Sayir) and AFRL/RX (Monitors Drs. C. Woodward and C. Przybyla).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Stinville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stinville, J.C., Lenthe, W.C., Echlin, M.P. et al. Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base superalloys. Int J Fract 208, 221–240 (2017). https://doi.org/10.1007/s10704-017-0241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0241-z

Keywords

Navigation