Skip to main content

Advertisement

Log in

Birt–Hogg–Dubé: tumour suppressor function and signalling dynamics central to folliculin

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

The cellular function of folliculin (FLCN) is a mystery that still needs to be solved. It is known that mutation of FLCN can predispose Birt–Hogg–Dubé (BHD) patient’s to renal cell carcinoma , renal and lung cysts, as well as skin fibrofolliculomas. FLCN has been classed as a tumour suppressor, but it is probable that cystic and the skin manifestations do not occur as a consequence of FLCN loss of heterozygosity. Discovery that FLCN is a direct substrate of AMP dependent protein kinase (AMPK) placed FLCN on the cell signalling map, downstream of AMPK. This breakthrough suggested that FLCN might be involved in cell energy homeostasis. Over these more recent years, BHD research has become much more complicated and interesting from a cell signalling perspective. Folliculin has been linked to numerous cell pathways that are known to cause cancer, involving cell growth, metabolism, cell adhesion, cell motility, cytokinesis, and cell survival. The collective evidence implies that FLCN may have a broader housekeeping role in the cell. Of particular importance, FLCN was recently been reported to have guanine exchange factor activity towards the small G protein Rab35 and implicates FLCN in vesicular trafficking and/or membrane sorting. This newer discovery will undoubtedly help in the continued challenge of solving the signalling puzzle that shrouds FLCN function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warren MB, Torres-Cabala CA, Turner ML, Merino MJ, Matrosova VY, Nickerson ML, Ma W, Linehan WM, Zbar B, Schmidt LS (2004) Expression of birt–hogg–dubé gene mRNA in normal and neoplastic human tissues. Mod Pathol 17:998–1011

    Article  PubMed  CAS  Google Scholar 

  2. Hong SB, Oh H, Valera VA, Stull J, Ngo DT, Baba M, Merino MJ, Linehan WM, Schmidt LS (2010) Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-beta signaling. Mol Cancer 9:160

    Article  PubMed  Google Scholar 

  3. Lu X, Wei W, Fenton J, Nahorski MS, Rabai E, Reiman A, Seabra L, Nagy Z, Latif F, Maher ER (2011) Therapeutic targeting the loss of the birt–ogg–dube suppressor gene. Mol Cancer Ther 10:80–89

    Article  PubMed  CAS  Google Scholar 

  4. Hudon V, Sabourin S, Dydensborg AB, Kottis V, Ghazi A, Paquet M, Crosby K, Pomerleau V, Uetani N, Pause A (2010) Renal tumour suppressor function of the Birt–Hogg–Dubé syndrome gene product folliculin. J Med Genet 47:182–189

    Article  PubMed  CAS  Google Scholar 

  5. Hasumi Y, Baba M, Ajima R, Hasumi H, Valera VA, Klein ME, Haines DC, Merino MJ, Hong SB, Yamaguchi TP, Schmidt LS, Linehan WM (2009) Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci U S A 106:18722–18727

    Article  PubMed  CAS  Google Scholar 

  6. van Steensel MA, Verstraeten VL, Frank J, Kelleners-Smeets NW, Poblete-Gutiérrez P, Marcus-Soekarman D, Bladergroen RS, Steijlen PM, van Geel M (2007) Novel mutations in the BHD gene and absence of loss of heterozygosity in fibrofolliculomas of Birt–Hogg–Dubé patients. J Invest Dermatol 127:588–593

    Article  PubMed  Google Scholar 

  7. Nookala RK, Langemeyer L, Pacitto A, Ochoa-Montaño B, Donaldson JC, Blaszczyk BK, Chirgadze DY, Barr FA, Bazan JF, Blundell TL (2012) Crystal structure of folliculin reveals a hidDENN function in genetically inherited renal cancer. Open Biol 2:120071

    Article  PubMed  Google Scholar 

  8. Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, Esposito D, Gillette WK, Hopkins RF 3rd, Hartley JL, Furihata M, Oishi S, Zhen W, Burke TR Jr, Linehan WM, Schmidt LS, Zbar B (2006) Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA 103:15552–15557

    Article  PubMed  CAS  Google Scholar 

  9. Hasumi H, Baba M, Hong SB, Hasumi Y, Huang Y, Yao M, Valera VA, Linehan WM, Schmidt LS (2008) Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene 415:60–67

    Article  PubMed  CAS  Google Scholar 

  10. Takagi Y, Kobayashi T, Shiono M, Wang L, Piao X, Sun G, Zhang D, Abe M, Hagiwara Y, Takahashi K, Hino O (2008) Interaction of folliculin (Birt–Hogg–Dubé gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene 27:5339–5347

    Article  PubMed  CAS  Google Scholar 

  11. Dunlop EA, Tee AR (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21:827–835

    Article  PubMed  CAS  Google Scholar 

  12. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  PubMed  CAS  Google Scholar 

  13. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  PubMed  CAS  Google Scholar 

  14. Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycin associated protein. Proc Natl Acad Sci USA 96:4438–4442

    Article  PubMed  CAS  Google Scholar 

  15. Hui L, Rodrik V, Pielak RM, Knirr S, Zheng Y, Foster DA (2005) mTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells. J Biol Chem 280:35829–35835

    Article  PubMed  CAS  Google Scholar 

  16. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326

    Article  PubMed  CAS  Google Scholar 

  17. Hartman TR, Nicolas E, Klein-Szanto A, Al-Saleem T, Cash TP, Simon MC, Henske EP (2009) The role of the Birt–Hogg–Dubé protein in mTOR activation and renal tumorigenesis. Oncogene 28:1594–1604

    Article  PubMed  CAS  Google Scholar 

  18. Cash TP, Gruber JJ, Hartman TR, Henske EP, Simon MC (2011) Loss of the Birt–Hogg–Dubé tumor suppressor results in apoptotic resistance due to aberrant TGFβ-mediated transcription. Oncogene 30:2534–2546

    Article  PubMed  CAS  Google Scholar 

  19. Preston RS, Philp A, Claessens T, Gijezen L, Dydensborg AB, Dunlop EA, Harper KT, Brinkhuizen T, Menko FH, Davies DM, Land SC, Pause A, Baar K, van Steensel MA, Tee AR (2011) Absence of the Birt–Hogg–Dubé gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility. Oncogene 30:1159–1173

    Article  PubMed  CAS  Google Scholar 

  20. Chen J, Futami K, Petillo D, Peng J, Wang P, Knol J, Li Y, Khoo SK, Huang D, Qian CN, Zhao P, Dykema K, Zhang R, Cao B, Yang XJ, Furge K, Williams BO, Teh BT (2008) Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS One 3:e3581

    Article  PubMed  Google Scholar 

  21. Lingaas F, Comstock KE, Kirkness EF, Sørensen A, Aarskaug T, Hitte C, Nickerson ML, Moe L, Schmidt LS, Thomas R, Breen M, Galibert F, Zbar B, Ostrander EA (2003) A mutation in the canine BHD gene is associated with hereditary multifocal renal cystadenocarcinoma and nodular dermatofibrosis in the German Shepherd dog. Hum Mol Genet 12:3043–3053

    Article  PubMed  CAS  Google Scholar 

  22. Okimoto K, Kouchi M, Matsumoto I, Sakurai J, Kobayashi T, Hino O (2004) Natural history of the Nihon rat model of BHD. Curr Mol Med 4:887–893

    Article  PubMed  CAS  Google Scholar 

  23. Inman GJ (2011) Switching TGFβ from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev 21:93–99

    Article  PubMed  CAS  Google Scholar 

  24. Singh SR, Zhen W, Zheng Z, Wang H, Oh SW, Liu W, Zbar B, Schmidt LS, Hou SX (2006) The Drosophila homolog of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene 25:5933–5941

    Article  PubMed  CAS  Google Scholar 

  25. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  26. Land SC, Tee AR (2007) Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534–20543

    Article  PubMed  CAS  Google Scholar 

  27. Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of kreb’s cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    Article  PubMed  CAS  Google Scholar 

  28. Hong SB, Oh H, Valera VA, Baba M, Schmidt LS, Linehan WM (2010) Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One 5:e15793

    Article  PubMed  Google Scholar 

  29. Armah HB, Parwani AV (2010) Xp11.2 translocation renal cell carcinoma. Arch Pathol Lab Med 134:124–129

    PubMed  Google Scholar 

  30. Nahorski MS, Seabra L, Straatman-Iwanowska A, Wingenfeld A, Reiman A, Lu X, Klomp JA, Teh BT, Hatzfeld M, Gissen P, Maher ER (2012) Folliculin interacts with p0071 (Plakophilin-4) and deficiency is associated with disordered RhoA signalling, epithelial polarization and cytokinesis. Hum Mol Genet (ahead of print)

  31. Medvetz DA, Khabibullin D, Hariharan V, Ongusaha PP, Goncharova EA, Schlechter T, Darling TN, Hofmann I, Krymskaya VP, Liao JK, Huang H, Henske EP (2012) Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion. PLoS One (ahead of print)

  32. Dodding MP, Mitter R, Humphries AC, Way M (2011) A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome. EMBO J 30:4523–4538

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.P. and A.T. thank the Myrovlytis Trust for funding and exchange of unpublished data. The Association for International Cancer Research funded A.T. via a Career Development Fellowship [No. 06-914/915]. A.P. research was funded by a grant from the Kidney Foundation of Canada and the Cancer Research Society, A.P. is a holder of the Canada Research Chair in Molecular Oncology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew R. Tee or Arnim Pause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tee, A.R., Pause, A. Birt–Hogg–Dubé: tumour suppressor function and signalling dynamics central to folliculin. Familial Cancer 12, 367–372 (2013). https://doi.org/10.1007/s10689-012-9576-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-012-9576-9

Keywords

Navigation