Skip to main content

Advertisement

Log in

The LKB1 complex-AMPK pathway: the tree that hides the forest

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Initially identified as the Caenorhabditis elegans PAR-4 homologue, the serine threonine kinase LKB1 is conserved throughout evolution and ubiquitously expressed. In humans, LKB1 is causally linked to the Peutz–Jeghers syndrome and is one of the most commonly mutated genes in several cancers like lung and cervical carcinomas. These observations have led to classify LKB1 as tumour suppressor gene. Although, considerable dark zones remain, an impressive leap in the understanding of LKB1 functions has been done during the last decade. Role of LKB1 as a major actor of the AMPK/mTOR pathway connecting cellular metabolism, cell growth and tumorigenesis has been extensively studied probably to the detriment of other functions of equal importance. This review will discuss about LKB1 activity regulation, its effectors and clues on their involvement in cell polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52:311–320

    Article  PubMed  CAS  Google Scholar 

  2. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W, Zimmer M (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18:38–43

    Article  PubMed  CAS  Google Scholar 

  3. Su JY, Erikson E, Maller JL (1996) Cloning and characterization of a novel serine/threonine protein kinase expressed in early X. embryos. J Biol Chem 271:14430–14437

    Article  PubMed  CAS  Google Scholar 

  4. Denison FC, Hiscock NJ, Carling D, Woods A (2009) Characterization of an alternative splice variant of LKB1. J Biol Chem 284:67–76

    Article  PubMed  CAS  Google Scholar 

  5. Towler MC, Fogarty S, Hawley SA, Pan DA, Martin DM, Morrice NA, McCarthy A, Galardo MN, Meroni SB, Cigorraga SB, Ashworth A, Sakamoto K, Hardie DG (2008) A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochem J 416:1–14

    Article  PubMed  CAS  Google Scholar 

  6. Rowan A, Churchman M, Jefferey R, Hanby A, Poulsom R, Tomlinson I (2000) In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours. J Pathol 192:203–206

    Article  PubMed  CAS  Google Scholar 

  7. Collins SP, Reoma JL, Gamm DM, Uhler MD (2000) LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345(Pt 3):673–680

    Article  PubMed  CAS  Google Scholar 

  8. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391:184–187

    Article  PubMed  CAS  Google Scholar 

  9. Hemminki A (1999) The molecular basis and clinical aspects of Peutz-Jeghers syndrome. Cell Mol Life Sci 55:735–750

    Article  PubMed  CAS  Google Scholar 

  10. Olschwang S, Boisson C, Thomas G (2001) Peutz-Jeghers families unlinked to STK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma. J Med Genet 38:356–360

    Article  PubMed  CAS  Google Scholar 

  11. Launonen V (2005) Mutations in the human LKB1/STK11 gene. Hum Mutat 26:291–297

    Article  PubMed  CAS  Google Scholar 

  12. Hastings ML, Resta N, Traum D, Stella A, Guanti G, Krainer AR (2005) An LKB1 AT-AC intron mutation causes Peutz-Jeghers syndrome via splicing at noncanonical cryptic splice sites. Nat Struct Mol Biol 12:54–59

    Article  PubMed  CAS  Google Scholar 

  13. Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D, Hardie DG, Prescott AR, van Aalten DM, Alessi DR (2004) Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci 117:6365–6375

    Article  PubMed  CAS  Google Scholar 

  14. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, Keller JJ, Westerman AM, Scott RJ, Lim W, Trimbath JD, Giardiello FM, Gruber SB, Offerhaus GJ, de Rooij FW, Wilson JH, Hansmann A, Moslein G, Royer-Pokora B, Vogel T, Phillips RK, Spigelman AD, Houlston RS (2006) Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 12:3209–3215

    Article  PubMed  CAS  Google Scholar 

  15. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, Cruz-Correa M, Offerhaus JA (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119:1447–1453

    Article  PubMed  CAS  Google Scholar 

  16. Sanchez-Cespedes M (2007) A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26:7825–7832

    Article  PubMed  CAS  Google Scholar 

  17. Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, McKay CJ, Carter R, Brunton VG, Frame MC, Ashworth A, Oien KA, Evans TR, Sansom OJ (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139:586–597

    Article  PubMed  CAS  Google Scholar 

  18. Shen Z, Wen XF, Lan F, Shen ZZ, Shao ZM (2002) The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. Clin Cancer Res 8:2085–2090

    PubMed  CAS  Google Scholar 

  19. Contreras CM, Gurumurthy S, Haynie JM, Shirley LJ, Akbay EA, Wingo SN, Schorge JO, Broaddus RR, Wong KK, Bardeesy N, Castrillon DH (2008) Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res 68:759–766

    Article  PubMed  CAS  Google Scholar 

  20. Kim CJ, Cho YG, Park JY, Kim TY, Lee JH, Kim HS, Lee JW, Song YH, Nam SW, Lee SH, Yoo NJ, Lee JY, Park WS (2004) Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. Eur J Cancer 40:136–141

    Article  PubMed  CAS  Google Scholar 

  21. Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, Makela TP (2001) Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293:1323–1326

    Article  PubMed  CAS  Google Scholar 

  22. Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE, Loda M, Carrasco DR, DePinho RA (2002) Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419:162–167

    Article  PubMed  CAS  Google Scholar 

  23. McCarthy A, Lord CJ, Savage K, Grigoriadis A, Smith DP, Weigelt B, Reis-Filho JS, Ashworth A (2009) Conditional deletion of the Lkb1 gene in the mouse mammary gland induces tumour formation. J Pathol 219:306–316

    Article  PubMed  CAS  Google Scholar 

  24. Hezel AF, Gurumurthy S, Granot Z, Swisa A, Chu GC, Bailey G, Dor Y, Bardeesy N, Depinho RA (2008) Pancreatic lkb1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28:2414–2425

    Article  PubMed  CAS  Google Scholar 

  25. Pearson HB, McCarthy A, Collins CM, Ashworth A, Clarke AR (2008) Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Res 68:2223–2232

    Article  PubMed  CAS  Google Scholar 

  26. Gurumurthy S, Hezel AF, Berger JH, Bosenberg MW, Bardeesy N (2008) LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis. Cancer Res 68:55–63

    Article  PubMed  CAS  Google Scholar 

  27. Granot Z, Swisa A, Magenheim J, Stolovich-Rain M, Fujimoto W, Manduchi E, Miki T, Lennerz JK, Stoeckert CJ Jr, Meyuhas O, Seino S, Permutt MA, Piwnica-Worms H, Bardeesy N, Dor Y (2009) LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab 10:296–308

    Article  PubMed  CAS  Google Scholar 

  28. Sun G, Tarasov AI, McGinty JA, French PM, McDonald A, Leclerc I, Rutter GA (2010) LKB1 deletion with the RIP2.Cre transgene modifies pancreatic beta-cell morphology and enhances insulin secretion in vivo. Am J Physiol Endocrinol Metab 298:E1261–E1273

    Article  PubMed  CAS  Google Scholar 

  29. Tamas P, Macintyre A, Finlay D, Clarke R, Feijoo-Carnero C, Ashworth A, Cantrell D (2010) LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 40:242–253

    Article  PubMed  CAS  Google Scholar 

  30. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646

    Article  PubMed  CAS  Google Scholar 

  31. Tiainen M, Vaahtomeri K, Ylikorkala A, Makela TP (2002) Growth arrest by the LKB1 tumor suppressor: induction of p21 (WAF1/CIP1). Hum Mol Genet 11:1497–1504

    Article  PubMed  CAS  Google Scholar 

  32. Tiainen M, Ylikorkala A, Makela TP (1999) Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci USA 96:9248–9251

    Article  PubMed  CAS  Google Scholar 

  33. Cheng H, Liu P, Wang ZC, Zou L, Santiago S, Garbitt V, Gjoerup OV, Iglehart JD, Miron A, Richardson AL, Hahn WC, Zhao JJ (2009) SIK1 couples LKB1–p53-dependent anoikis and suppresses metastasis. Sci Signal 2:Ra 35

    Google Scholar 

  34. Karuman P, Gozani O, Odze RD, Zhou XC, Zhu H, Shaw R, Brien TP, Bozzuto CD, Ooi D, Cantley LC, Yuan J (2001) The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7:1307–1319

    Article  PubMed  CAS  Google Scholar 

  35. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB (2007) The energy sensing LKB1-AMPK pathway regulates p27 (kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224

    Article  PubMed  CAS  Google Scholar 

  36. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  PubMed  CAS  Google Scholar 

  37. Forcet C, Etienne-Manneville S, Gaude H, Fournier L, Debilly S, Salmi M, Baas A, Olschwang S, Clevers H, Billaud M (2005) Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet 14:1283–1292

    Article  PubMed  CAS  Google Scholar 

  38. Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI (2008) The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 68:740–748

    Article  PubMed  CAS  Google Scholar 

  39. Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC (2004) Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116:457–466

    Article  PubMed  CAS  Google Scholar 

  40. Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  PubMed  CAS  Google Scholar 

  41. Al-Hakim AK, Goransson O, Deak M, Toth R, Campbell DG, Morrice NA, Prescott AR, Alessi DR (2005) 14–3–3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J Cell Sci 118:5661–5673

    Article  PubMed  CAS  Google Scholar 

  42. Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, Alessi DR, Clevers HC (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22:3062–3072

    Article  PubMed  CAS  Google Scholar 

  43. Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, Prescott AR, Clevers HC, Alessi DR (2003) MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22:5102–5114

    Article  PubMed  CAS  Google Scholar 

  44. Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM (2009) Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 326:1707–1711

    Article  PubMed  CAS  Google Scholar 

  45. Marignani PA, Scott KD, Bagnulo R, Cannone D, Ferrari E, Stella A, Guanti G, Simone C, Resta N (2007) Novel splice isoforms of STRADalpha differentially affect LKB1 activity, complex assembly and subcellular localization. Cancer Biol Ther 6:1627–1631

    Article  PubMed  CAS  Google Scholar 

  46. Sanna MG, da Silva Correia J, Luo Y, Chuang B, Paulson LM, Nguyen B, Deveraux QL, Ulevitch RJ (2002) ILPIP: a novel anti-apoptotic protein that enhances XIAP-mediated activation of JNK1 and protection against apoptosis. J Biol Chem 277:30454–30462

    Article  PubMed  CAS  Google Scholar 

  47. Sapkota GP, Deak M, Kieloch A, Morrice N, Goodarzi AA, Smythe C, Shiloh Y, Lees-Miller SP, Alessi DR (2002) Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J 368:507–516

    Article  PubMed  CAS  Google Scholar 

  48. Sherman MH, Kuraishy AI, Deshpande C, Hong JS, Cacalano NA, Gatti RA, Manis JP, Damore MA, Pellegrini M, Teitell MA (2010) AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling. Mol Cell 39:873–885

    Article  PubMed  CAS  Google Scholar 

  49. Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR, Morrice N, Deak M, Alessi DR (2001) Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90 (RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem 276:19469–19482

    Article  PubMed  CAS  Google Scholar 

  50. Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, Cantley LC (2009) Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 33:237–247

    Article  PubMed  CAS  Google Scholar 

  51. Fogarty S, Hardie DG (2009) C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J Biol Chem 284:77–84

    Article  PubMed  CAS  Google Scholar 

  52. Sapkota GP, Boudeau J, Deak M, Kieloch A, Morrice N, Alessi DR (2002) Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J 362:481–490

    Article  PubMed  CAS  Google Scholar 

  53. Sebbagh M, Santoni MJ, Hall B, Borg JP, Schwartz MA (2009) Regulation of LKB1/STRAD localization and function by E-cadherin. Curr Biol 19:37–42

    Article  PubMed  CAS  Google Scholar 

  54. Martin SG, St Johnston D (2003) A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421:379–384

    Article  PubMed  CAS  Google Scholar 

  55. Lan F, Cacicedo JM, Ruderman N, Ido Y (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283:27628–27635

    Article  PubMed  CAS  Google Scholar 

  56. Dorfman J, Macara IG (2008) STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell 19:1614–1626

    Article  PubMed  CAS  Google Scholar 

  57. Nezu J, Oku A, Shimane M (1999) Loss of cytoplasmic retention ability of mutant LKB1 found in Peutz-Jeghers syndrome patients. Biochem Biophys Res Commun 261:750–755

    Article  PubMed  CAS  Google Scholar 

  58. Smith DP, Spicer J, Smith A, Swift S, Ashworth A (1999) The mouse Peutz-Jeghers syndrome gene Lkb1 encodes a nuclear protein kinase. Hum Mol Genet 8:1479–1485

    Article  PubMed  CAS  Google Scholar 

  59. Narbonne P, Hyenne V, Li S, Labbe JC, Roy R (2010) Differential requirements for STRAD in LKB1-dependent functions in C. elegans. Development 137:661–670

    Article  PubMed  CAS  Google Scholar 

  60. Mirouse V, Swick LL, Kazgan N, Johnston D, Brenman JE (2007) LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol 177:387–392

    Article  PubMed  CAS  Google Scholar 

  61. Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Godel M, Muller K, Herbst M, Hornung M, Doerken M, Kottgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12:1115–1122

    Article  PubMed  CAS  Google Scholar 

  62. Boudeau J, Deak M, Lawlor MA, Morrice NA, Alessi DR (2003) Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. Biochem J 370:849–857

    Article  PubMed  CAS  Google Scholar 

  63. Nony P, Gaude H, Rossel M, Fournier L, Rouault JP, Billaud M (2003) Stability of the Peutz-Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37. Oncogene 22:9165–9175

    Article  PubMed  CAS  Google Scholar 

  64. Smith DP, Rayter SI, Niederlander C, Spicer J, Jones CM, Ashworth A (2001) LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Hum Mol Genet 10:2869–2877

    Article  PubMed  CAS  Google Scholar 

  65. Mehenni H, Lin-Marq N, Buchet-Poyau K, Reymond A, Collart MA, Picard D, Antonarakis SE (2005) LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum Mol Genet 14:2209–2219

    Article  PubMed  CAS  Google Scholar 

  66. Merg A, Howe JR (2004) Genetic conditions associated with intestinal juvenile polyps. Am J Med Genet C Semin Med Genet 129C:44–55

    Article  PubMed  Google Scholar 

  67. Nath-Sain S, Marignani PA (2009) LKB1 catalytic activity contributes to estrogen receptor alpha signaling. Mol Biol Cell 20:2785–2795

    Article  PubMed  CAS  Google Scholar 

  68. Marignani PA, Kanai F, Carpenter CL (2001) LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest. J Biol Chem 276:32415–32418

    Article  PubMed  CAS  Google Scholar 

  69. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  PubMed  CAS  Google Scholar 

  70. Hong SP, Leiper FC, Woods A, Carling D, Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100:8839–8843

    Article  PubMed  CAS  Google Scholar 

  71. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113:274–284

    PubMed  CAS  Google Scholar 

  72. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  PubMed  CAS  Google Scholar 

  73. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066

    Article  PubMed  CAS  Google Scholar 

  74. Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 103:17378–17383

    Article  PubMed  CAS  Google Scholar 

  75. Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN, Sanes JR, Polleux F (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129:549–563

    Article  PubMed  CAS  Google Scholar 

  76. Kishi M, Pan YA, Crump JG, Sanes JR (2005) Mammalian SAD kinases are required for neuronal polarization. Science 307:929–932

    Article  PubMed  CAS  Google Scholar 

  77. Alvarado-Kristensson M, Rodriguez MJ, Silio V, Valpuesta JM, Carrera AC (2009) SADB phosphorylation of gamma-tubulin regulates centrosome duplication. Nat Cell Biol 11:1081–1092

    Article  PubMed  CAS  Google Scholar 

  78. Fujimoto T, Yurimoto S, Hatano N, Nozaki N, Sueyoshi N, Kameshita I, Mizutani A, Mikoshiba K, Kobayashi R, Tokumitsu H (2008) Activation of SAD kinase by Ca2+/calmodulin-dependent protein kinase kinase. Biochemistry 47:4151–4159

    Article  PubMed  CAS  Google Scholar 

  79. Cohen D, Brennwald PJ, Rodriguez-Boulan E, Musch A (2004) Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J Cell Biol 164:717–727

    Article  PubMed  CAS  Google Scholar 

  80. Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S (2004) aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14:1425–1435

    Article  PubMed  CAS  Google Scholar 

  81. Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, Mandelkow EM (2003) MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 22:5090–5101

    Article  PubMed  CAS  Google Scholar 

  82. Kojima Y, Miyoshi H, Clevers HC, Oshima M, Aoki M, Taketo MM (2007) Suppression of tubulin polymerization by the LKB1-microtubule-associated protein/microtubule affinity-regulating kinase signaling. J Biol Chem 282:23532–23540

    Article  PubMed  CAS  Google Scholar 

  83. Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, Cooper M, Jones D, Frenz L, Glover DM (2004) Genome-wide survey of protein kinases required for cell cycle progression. Nature 432:980–987

    Article  PubMed  CAS  Google Scholar 

  84. Takemori H, Doi J, Horike N, Katoh Y, Min L, Lin XZ, Wang ZN, Muraoka M, Okamoto M (2003) Salt-inducible kinase-mediated regulation of steroidogenesis at the early stage of ACTH-stimulation. J Steroid Biochem Mol Biol 85:397–400

    Article  PubMed  CAS  Google Scholar 

  85. Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR III, Takemori H, Okamoto M, Montminy M (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119:61–74

    Article  PubMed  CAS  Google Scholar 

  86. Tsuchihara K, Ogura T, Fujioka R, Fujii S, Kuga W, Saito M, Ochiya T, Ochiai A, Esumi H (2008) Susceptibility of Snark-deficient mice to azoxymethane-induced colorectal tumorigenesis and the formation of aberrant crypt foci. Cancer Sci 99:677–682

    Article  PubMed  CAS  Google Scholar 

  87. Yamamoto H, Takashima S, Shintani Y, Yamazaki S, Seguchi O, Nakano A, Higo S, Kato H, Liao Y, Asano Y, Minamino T, Matsumura Y, Takeda H, Kitakaze M (2008) Identification of a novel substrate for TNFalpha-induced kinase NUAK2. Biochem Biophys Res Commun 365:541–547

    Article  PubMed  CAS  Google Scholar 

  88. Zagorska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR, Alessi DR (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3:ra 25

    Article  Google Scholar 

  89. Suzuki A, Lu J, Kusakai G, Kishimoto A, Ogura T, Esumi H (2004) ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol Cell Biol 24:3526–3535

    Article  PubMed  CAS  Google Scholar 

  90. Humbert N, Navaratnam N, Augert A, Da Costa M, Martien S, Wang J, Martinez D, Abbadie C, Carling D, de Launoit Y, Gil J, Bernard D (2010) Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO J 29:376–386

    Article  PubMed  CAS  Google Scholar 

  91. Suzuki A, Kusakai G, Kishimoto A, Shimojo Y, Miyamoto S, Ogura T, Ochiai A, Esumi H (2004) Regulation of caspase-6 and FLIP by the AMPK family member ARK5. Oncogene 23:7067–7075

    Article  PubMed  CAS  Google Scholar 

  92. Hebert M, Potin S, Sebbagh M, Bertoglio J, Breard J, Hamelin J (2008) Rho-ROCK-dependent ezrin-radixin-moesin phosphorylation regulates Fas-mediated apoptosis in Jurkat cells. J Immunol 181:5963–5973

    PubMed  CAS  Google Scholar 

  93. Jaleel M, McBride A, Lizcano JM, Deak M, Toth R, Morrice NA, Alessi DR (2005) Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Lett 579:1417–1423

    Article  PubMed  CAS  Google Scholar 

  94. Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A, Alessi DR (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24:1810–1820

    Article  PubMed  CAS  Google Scholar 

  95. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392:190–193

    Article  PubMed  CAS  Google Scholar 

  96. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    Article  PubMed  CAS  Google Scholar 

  97. Zhang L, Li J, Young LH, Caplan MJ (2006) AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci USA 103:17272–17277

    Article  PubMed  CAS  Google Scholar 

  98. Zheng B, Cantley LC (2007) Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci USA 104:819–822

    Article  PubMed  CAS  Google Scholar 

  99. Caudron F, Barral Y (2009) Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell 16:493–506

    Article  PubMed  CAS  Google Scholar 

  100. Shao J, Evers BM, Sheng H (2004) Roles of phosphatidylinositol 3’-kinase and mammalian target of rapamycin/p70 ribosomal protein S6 kinase in K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res 64:229–235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologise to researchers whose investigations were not included in this review, due to space limitations. This work is supported by INSERM and La Ligue Nationale Contre le Cancer (Label Ligue 2010 JPB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michaël Sebbagh or Jean-Paul Borg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebbagh, M., Olschwang, S., Santoni, MJ. et al. The LKB1 complex-AMPK pathway: the tree that hides the forest. Familial Cancer 10, 415–424 (2011). https://doi.org/10.1007/s10689-011-9457-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-011-9457-7

Keywords

Navigation