Skip to main content
Log in

An investigation of the Eigenvalue Calibration Method (ECM) using GASP for non-imaging and imaging detectors

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Polarised light from astronomical targets can yield a wealth of information about their source radiation mechanisms, and about the geometry of the scattered light regions. Optical observations, of both the linear and circular polarisation components, have been impeded due to non-optimised instrumentation. The need for suitable observing conditions and the availability of luminous targets are also limiting factors. The science motivation of any instrument adds constraints to its operation such as high signal-to-noise (SNR) and detector readout speeds. These factors in particular lead to a wide range of sources that have yet to be observed. The Galway Astronomical Stokes Polarimeter (GASP) has been specifically designed to make observations of these sources. GASP uses division of amplitude polarimeter (DOAP) (Compain and Drevillon Appl. Opt. 37, 5938–5944, 1998) to measure the four components of the Stokes vector (I, Q, U and V) simultaneously, which eliminates the constraints placed upon the need for moving parts during observation, and offers a real-time complete measurement of polarisation. Results from the GASP calibration are presented in this work for both a 1D detector system, and a pixel-by-pixel analysis on a 2D detector system. Following Compain et al. (Appl. Opt. 38, 3490–3502 1999) we use the Eigenvalue Calibration Method (ECM) to measure the polarimetric limitations of the instrument for each of the two systems. Consequently, the ECM is able to compensate for systematic errors introduced by the calibration optics, and it also accounts for all optical elements of the polarimeter in the output. Initial laboratory results of the ECM are presented, using APD detectors, where errors of 0.2 % and 0.1° were measured for the degree of linear polarisation (DOLP) and polarisation angle (PA) respectively. Channel-to-channel image registration is an important aspect of 2-D polarimetry. We present our calibration results of the measured Mueller matrix of each sample, used by the ECM, when 2 Andor iXon Ultra 897 detectors were loaned to the project. A set of Zenith flat-field images were recorded during an observing campaign at the Palomar 200 inch telescope in November 2012. From these we show the polarimetric errors from the spatial polarimetry indicating both the stability and absolute accuracy of GASP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Errors quoted are based on the Poissonian statistics for the 3 × 3 pixel area

References

  1. Aben, I., Helderman, F., Stam, D.M., Stammes, P.: Spectral fine-structure in the polarisation of skylight. Geophys. Res. Lett. 26, 591–594 (1999)

    Article  ADS  Google Scholar 

  2. Aben, I., Stam, D.M., Helderman, F.: The ring effect in skylight polarisation. Geophys. Res. Lett. 28, 519–522 (2001)

    Article  ADS  Google Scholar 

  3. Azzam, R., Bashara, N.: Ellipsometry and Polarized Light. North Holland (1988)

  4. Azzam, R.M.A., Lopez, A.G.: Accurate calibration of the four-detector photopolarimeter with imperfect polarizing optical elements. J. Opt. Soc. Am. A 6(10), 1513–1521 (1989)

    Article  ADS  Google Scholar 

  5. Boesche, E., Stammes, P., Ruhtz, T., Preusker, R., Fischer, J.: Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements. Appl. Opt. 45, 8790–8805 (2006)

    Article  ADS  Google Scholar 

  6. Collins, P., Kyne, G., Lara, D., Redfern, M., Shearer, A., Sheehan, B.: The Galway astronomical Stokes polarimeter: an all-Stokes optical polarimeter with ultra-high time resolution. Experimental Astronomy (2013)

  7. Collins, P., Sheehan, B., Redfern, M., Shearer, A.: GASP - Galway Astronomical Stokes Polarimeter. ArXiv e-prints (2009)

  8. Compain, E., Drevillon, B.: Broadband division-of-amplitude polarimeter based on uncoated prisms. Appl. Opt. 37, 5938–5944 (1998)

    Article  ADS  Google Scholar 

  9. Compain, E., Poirier, S., Drevillon, B.: General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers. Appl. Opt. 38, 3490–3502 (1999)

    Article  ADS  Google Scholar 

  10. Cronin, T.W., Warrant, E.J., Greiner, B.: Celestial polarization patterns during twilight. Appl. Opt. 45, 5582–5589 (2006)

    Article  ADS  Google Scholar 

  11. Dahlberg, A.R., Pust, N.J., Shaw, J.A.: All-sky imaging polarimeter measurements of visible and NIR skylight at Mauna Loa, Hawaii. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7461, p 7 (2009)

  12. de Martino, A.: General methods for optimized design and calibration of Mueller polarimeters. Thin Solid Films 455, 112–119 (2004)

    Article  ADS  Google Scholar 

  13. Drevillon, B.: Progress in crystal growth and characterization of materials (1993)

  14. Harrington, D.M., Kuhn, J.R., Hall, S.: Deriving telescope mueller matrices using daytime sky polarization observations. Publ. Astron. Soc. Pac. 123, 799–811 (2011)

    Article  ADS  Google Scholar 

  15. Hauge, P.S.: Mueller matrix ellipsometry with imperfect compensators. J. Opt. Soc. Am. A 68(11), 1519–1528 (1978)

    Article  ADS  Google Scholar 

  16. Horváth, G., Barta, A., Gaĺ, J., Suhai, B., Haiman, O.: Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection. Appl. Opt. 41, 543–559 (2002)

    Article  ADS  Google Scholar 

  17. Kisselev, V., Bulgarelli, B.: Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation. J. Quant. Spectrosc. Radiat. Transf. 85, 419–435 (2004)

    Article  ADS  Google Scholar 

  18. Kyne, G.: The optical development and calibration of the Galway Astronomical Stokes Polarimeter (GASP) as a multi-detector system for the polarimetric observations of variable optical sources. PhD thesis, The National University of Ireland, Galway. http://hdl.handle.net/10379/4572 (2014)

  19. Lara Saucedo, D.: Three-dimensional complete polarisation sensitive imaging using a confocal Mueller matrix polarimeter. PhD thesis, Imperial College London (2005)

  20. Litvinov, P., Hasekamp, O., Cairns, B., Mishchenko, M.: Reflection models for soil and vegetation surfaces from multiple-viewing angle photopolarimetric measurements. J. Quant. Spectrosc. Radiat. Transf. 111, 529–539 (2010)

    Article  ADS  Google Scholar 

  21. Peltoniemi, J., Hakala, T., Suomalainen, J., Puttonen, E.: Polarised bidirectional reflectance factor measurements from soil, stones, and snow. J. Quant. Spectrosc. Radiat. Transf. 110, 1940–1953 (2009)

    Article  ADS  Google Scholar 

  22. Pust, N.J., Shaw, J.A.: Dual-field imaging polarimeter for studying the effect of clouds on sky and target polarization. In: Shaw, J.A., Tyo, J.S. (eds.) Polarization Science and Remote Sensing II, volume 5888 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp 295–303 (2005)

  23. Pust, N.J., Shaw, J.A.: Dual-field imaging polarimeter using liquid crystal variable retarders. Appl. Opt. 45, 5470–5478 (2006)

    Article  ADS  Google Scholar 

  24. Pust, N.J., Shaw, J.A.: All-sky polarization imaging. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6682, p 4 (2007)

  25. Pust, N.J., Shaw, J.A.: Digital all-sky polarization imaging of partly cloudy skies. Appl. Opt. 47, 190 (2008)

    Article  ADS  Google Scholar 

  26. Pust, N.J., Shaw, J.A.: How good is a single-scattering model of visible-NIR atmospheric skylight polarization?. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7461 (2009)

  27. Shaw, J.A., Pust, N.J., Staal, B., Johnson, J., Dahlberg, A.R.: Continuous outdoor operation of an all-sky polarization imager. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7672 (2010)

  28. Shukurov, A.K., Shukurov, K.A.: Field studies of the correlation between the atmospheric aerosol content and the light polarization at the zenith of the daytime sky. Izv. Atmos. Oceanic Phys. 42, 68–73 (2006)

    Article  ADS  Google Scholar 

  29. Smith, M.H., Woodruff, J.B., Howe, J.D.: Beam wander considerations in imaging polarimetry. In: Goldstein, D.H., Chenault, D.B. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3754, pp 50–54 (1999)

  30. Suhai, B., Horváth, G.: How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study. J. Opt. Soc. Am. A 21(9), 1669–1676 (2004)

    Article  ADS  Google Scholar 

  31. Thompson, R.C., Bottiger, J.R., Fry, E.S.: Measurement of polarized light interactions via the mueller matrix. Appl. Opt. 19(8), 1323–1332 (1980)

    Article  ADS  Google Scholar 

  32. Tyo, J.S., Goldstein, D.L., Chenault, D.B., Shaw, J.A.: Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45(22), 5453–5469 (2006)

    Article  ADS  Google Scholar 

  33. Ugolnikov, O., Maslov, I.: Quadrantids 2008 and 2009: detection of dust in the atmosphere by polarization twilight sky measurements. In: Proceedings of the International Meteor Conference, 27th IMC, Sachticka, 2008, pp 98–101 (2010)

  34. Ugolnikov, O.S., Postylyakov, O.V., Maslov, I.A.: Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky. J. Quant. Spectrosc. Radiat. Transf. 88, 233–241 (2004)

    Article  ADS  Google Scholar 

  35. Vermeulen, A., Devaux, C., Herman, M.: Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method. Appl. Opt. 39, 6207–6220 (2000)

    Article  ADS  Google Scholar 

  36. Zeng, J., Han, Q., Wang, J.: High-spectral resolution simulation of polarization of skylight: sensitivity to aerosol vertical profile. Geophys. Res. Lett. 35, 20801 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian Kyne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyne, G., Lara, D., Hallinan, G. et al. An investigation of the Eigenvalue Calibration Method (ECM) using GASP for non-imaging and imaging detectors. Exp Astron 41, 43–66 (2016). https://doi.org/10.1007/s10686-015-9464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9464-z

Keywords

Navigation