Skip to main content
Log in

Reionization and the Cosmic Dawn with the Square Kilometre Array

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21 cm line from the earliest phases of star and galaxy formation in the Universe. This 21 cm signal provides a new and unique window both on the time of the formation of the first stars and accreting black holes and the subsequent period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. We will use both names throughoutcthe White Paper, mostly indicating the very low frequency (≲ 250 MHz) part of the SKA array interesting for HI studies at redshift z ≳ 5.

  2. These baselines exceed the imprint of the station beam on the ionosphere and larger beam-sizes therefore require longer baselines, somewhat counterintuitively.

  3. This first draft of this white paper was written during a three day workshop at the Oskar Klein Centre in Stockholm, January 18–20, 2012.

  4. Sometimes this period is called the Late Dark Ages but this is confusing as the Universe at those times did contain sources of radiation and therefore was no longer truly dark.

  5. We will use cMpc for comoving Mpc and pMpc for proper Mpc; without any prefix Mpc means cMpc.

  6. The physical distance of a deviation of the wave-vector from the straight line it would follow without the ionosphere, is smaller than the dominant scales that cause phase distortions of the plane wave.

  7. This section is based on a memo written by two of the co-authors (LVEK and BS) as part of the SKA Science Working Group to inform the SKA Project Office on the optimal frequency range(s) for high-redshift HI studies.

  8. We note that these redshifts are not as precisely determined as quoted here from either observations or theory, but we would like to be precise in corresponding redshifts and frequencies.

  9. We note that this assumes that the collecting area (or \(A_{\mathrm eff}\) per antenna) that can be purchased per dollar is a function of \(\nu _{\mathrm opt}\). We suspect, however, that it will not be a strong function and that \(A_{\mathrm eff}\) goes up with \(\nu _{\mathrm opt}\) going down, for fixed costs, because dipoles do not linearly grow in cost with their effective collecting area. Hence, one might consider the extreme case where dipole size is not a cost factor. In that case \(A_{\mathrm eff}\) grows with \((\nu /\nu _{\mathrm opt})^{-2}\) and offsets the loss in collecting area due to sparseness at frequencies greater than \(\nu _{\mathrm opt}\). In that case, choosing a very low value of \(\nu _{\mathrm opt}\) makes more sense, but could be limited by other factors such as land use, etc. A final choice of \(\nu _{\mathrm opt}\) should therefore factor this cost in.

  10. This equation is not given in this form in [148], but has been derived using the same method as outlined there. In this form is gives the important scaling relations with array parameters useful to understand power-spectrum measurements.

  11. We note that somewhat larger beams might be ok (station size perhaps up to 70 m) with multi-beaming and uv-plane dithering but this will require careful thinking about how to connect these multi-beamed data into a single power spectrum in overlapping areas. It can best be done in the uv-plane by combining the visibilities brought to a common phase-center. Also a hybrid system where only a sub-set of receiver elements inside stations are beam-formed and correlated could be considered.

  12. We recognize that more details need to be worked out especially on costs and calibratability of the array, but as far as we are aware this array design does not have major show stoppers and could be used as a starting point for a more detailed design.

  13. These ranges have been argued for as well in the Memo “Is There an Optimum Frequency Range for SKA1-lo? Question 1 of the Magnicent Memoranda II” by Huynh et al.

References

  1. Adshead, P.J., Furlanetto, S.R.: Reionization and the large-scale 21-cm cosmic microwave background cross-correlation. Mon. Not. R. Astron. Soc. 384, 291 (2008)

    Article  ADS  Google Scholar 

  2. Aghanim, N., Majumdar, S., Silk, J.: Secondary anisotropies of the CMB. Rep. Prog. Phys. 71, 066902 (2008)

    Article  ADS  Google Scholar 

  3. Ahn, K., Hong, S.E., Park, C., Kim, J., Iliev, I.J., Mellema, G.: 2D genus topology of 21-cm differential brightness temperature during cosmic reionization. ArXiv:1008.3914 (2010)

  4. Ali, S.S., Bharadwaj, S., Chengalur, J.N.: Foregrounds for redshifted 21-cm studies of reionization: giant meter wave radio telescope 153-MHz observations. Mon. Not. R. Astron. Soc. 385, 2166 (2008)

    Article  ADS  Google Scholar 

  5. Alvarez, M.A., Komatsu, E., Doré, O., Shapiro, P.R.: The cosmic reionization history as revealed by the cosmic microwave background doppler-21 cm correlation. Astrophys. J. 647, 840 (2006)

    Article  ADS  Google Scholar 

  6. Baek, S., Semelin, B., Di Matteo, P., Revaz, Y., Combes, F.: Reionization by UV or X-ray sources. Astron. Astrophys. 523, A4 (2010)

    Article  ADS  Google Scholar 

  7. Barkana, R.: Separating out the Alcock-Paczyński effect on 21-cm fluctuations. Mon. Not. R. Astron. Soc. 372, 259 (2006)

    Article  ADS  Google Scholar 

  8. Barkana, R., Loeb, A.: A method for separating the physics from the astrophysics of high-redshift 21 centimeter fluctuations. Astrophys. J. 624, L65 (2005)

    Article  ADS  Google Scholar 

  9. Barkana, R., Loeb, A.: Detecting the earliest galaxies through two new sources of 21 centimeter fluctuations. Astrophys. J. 626, 1 (2005)

    Article  ADS  Google Scholar 

  10. Barkana, R., Loeb, A.: Light-cone anisotropy in 21-cm fluctuations during the Epoch of Reionization. Mon. Not. R. Astron. Soc. 372, L43 (2006)

    Article  ADS  Google Scholar 

  11. Barkana, R., Loeb, A.: The difference PDF of 21-cm fluctuations: a powerful statistical tool for probing cosmic reionization. Mon. Not. R. Astron. Soc. 384, 1069 (2008)

    Article  ADS  Google Scholar 

  12. Basu, K., Hernández-Monteagudo, C., Sunyaev, R.A.: CMB observations and the production of chemical elements at the end of the dark ages. Astron. Astrophys. 416, 447 (2004)

    Article  ADS  Google Scholar 

  13. Bell, J.F., Ekers, R.D., Bunton, J.D.: Radio frequency interference mitigation strategies: summary of the E. & F. White conference held in Sydney, Australia, December 1999. Publ. Astron. Soc. Aust. 17, 255 (2000)

    Article  ADS  Google Scholar 

  14. Bernardi, G., et al.: Foregrounds for observations of the cosmological 21 cm line. I. First Westerbork measurements of Galactic emission at 150 MHz in a low latitude field. Astron. Astrophys. 500, 965 (2009)

    Article  ADS  Google Scholar 

  15. Bernardi, G., et al.: Foregrounds for observations of the cosmological 21 cm line. II. Westerbork observations of the fields around 3C 196 and the North Celestial Pole. Astron. Astrophys. 522, A67 (2010)

    Article  ADS  Google Scholar 

  16. Bernardi, G., Mitchell, D.A., Ord, S.M., Greenhill, L.J., Pindor, B., Wayth, R.B., Wyithe, J.S.B.: Subtraction of point sources from interferometric radio images through an algebraic forward modelling scheme. Mon. Not. R. Astron. Soc. 413, 411 (2011)

    Article  ADS  Google Scholar 

  17. Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  18. Bharadwaj, S., Ali, S.S.: The cosmic microwave background radiation fluctuations from HI perturbations prior to reionization. Mon. Not. R. Astron. Soc. 352, 142 (2004)

    Article  ADS  Google Scholar 

  19. Boonstra, A.J., Weber, R., Colom, P.: RFI mitigation strategies for phased-array SKA concepts In: Proceedings of Wide Field Astronomy & Technology for the Square Kilometre Array (SKADS 2009), 4–6 November 2009.Chateau de Limelette, Belgium (2009). Published online at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=132

  20. Bourgois, G.: About the ergodicity hypothesis in random propagation studies. Astron. Astrophys. 102, 212 (1981)

    ADS  Google Scholar 

  21. Bouwens, R.J., et al.: A candidate redshift z\(\sim \)10 galaxy and rapid changes in that population at an age of 500Myr. Nature 469, 504 (2011)

    Article  ADS  Google Scholar 

  22. Bouwens, R.J., et al.: Discovery of z\(\sim \)8 galaxies in the hubble ultra deep field from ultra-deep WFC3/IR observations. Astrophys. J. 709, L133 (2010)

    Article  ADS  Google Scholar 

  23. Bouwens, R.J., et al.: Lower-luminosity galaxies could reionize the Universe: very steep faint-end slopes to the UV luminosity functions at z \(\geq \) 5–8 from the HUDF09 WFC3/IR observations. Astrophys. J. 752, L5 (2012)

    Article  ADS  Google Scholar 

  24. Bowman, J.D., Morales, M.F., Hewitt, J.N.: The sensitivity of first-generation Epoch of Reionization observatories and their potential for differentiating theoretical power spectra. Astrophys. J. 638, 20 (2006)

    Article  ADS  Google Scholar 

  25. Bowman, J.D., Morales, M.F., Hewitt, J.N.: Constraints on fundamental cosmological parameters with upcoming redshifted 21 cm observations. Astrophys. J. 661, 1 (2007)

    Article  ADS  Google Scholar 

  26. Bowman, J.D., Rogers, A.E.E.: A lower limit of \(\Delta \)z¿0.06 for the duration of the reionization epoch. Nature 468, 796 (2010)

    Article  ADS  Google Scholar 

  27. Boyle, B.J., Shanks, T., Croom, S.M., Smith, R.J., Miller, L., Loaring, N., Heymans, C.: The 2dF QSO redshift survey—I. The optical luminosity function of quasi-stellar objects. Mon. Not. R. Astron. Soc. 317, 1014 (2000)

    Article  ADS  Google Scholar 

  28. Brandenberger, R.H., Danos, R.J., Hernández, O.F., Holder, G.P.: The 21 cm signature of cosmic string wakes. J. Cosmol. Astropart. Phys. 12, 28 (2010)

    Article  ADS  Google Scholar 

  29. Braun, R.: Understanding synthesis imaging dynamic range. Astron. Astrophys. 551, A91 (2013)

    Article  ADS  Google Scholar 

  30. Bunker, A.J., et al.: The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3 imaging of the hubble ultra deep field. Mon. Not. R. Astron. Soc. 409, 855 (2010)

    Article  ADS  Google Scholar 

  31. Burns, J.O., et al.: Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE). Adv. Space Res. 49, 433 (2012)

    Article  ADS  Google Scholar 

  32. Carilli, C.L.: Intensity mapping of molecular gas during cosmic reionization. Astrophys. J. 730, L30 (2011)

    Article  ADS  Google Scholar 

  33. Carilli, C.L., Gnedin, N.Y., Owen, F.: H I 21 centimeter absorption beyond the Epoch of Reionization. Astrophys. J. 577, 22 (2002)

    Article  ADS  Google Scholar 

  34. Carilli, C.L., et al.: Ionization Near Zones Associated with Quasars at z \(\sim \) 6. Astrophys. J. 714, 834 (2010)

    Article  ADS  Google Scholar 

  35. Carilli, C.L., Wang, R., van Hoven, M.B., Dwarakanath, K., Chengalur, J.N., Wyithe, S.: A Search for H I 21 cm absorption toward the highest redshift (z\(\sim \)5.2) radio-loud objects. Astron. J. 133, 2841 (2007)

    Article  ADS  Google Scholar 

  36. Chapman, E., et al.: The scale of the problem: recovering images of reionization with generalized morphological component analysis. Mon. Not. R. Astron. Soc. 429, 165 (2013)

    Article  ADS  Google Scholar 

  37. Chapman, E., et al.: Foreground removal using FASTICA: a showcase of LOFAR-EoR. Mon. Not. R. Astron. Soc. 423, 2518 (2012)

    Article  ADS  Google Scholar 

  38. Chuzhoy, L., Alvarez, M.A., Shapiro, P.R.: Recognizing the first radiation sources through their 21 cm signature. Astrophys. J. 648, L1 (2006)

    Article  ADS  Google Scholar 

  39. Chuzhoy, L., Shapiro, P.R.: Ultraviolet pumping of hyperfine transitions in the light elements, with application to 21 cm hydrogen and 92 cm deuterium lines from the early universe. Astrophys. J. 651, 1 (2006)

    Article  ADS  Google Scholar 

  40. Ciardi, B., Bolton, J.S., Maselli, A., Graziani, L.: The effect of intergalactic helium on hydrogen reionization: implications for the sources of ionizing photons at z\(>\)6. Mon. Not. R. Astron. Soc. 423, 558 (2012)

    Article  ADS  Google Scholar 

  41. Ciardi, B., Ferrara, A.: The first cosmic structures and their effects. Space Sci. Rev. 116, 625 (2005)

    Article  ADS  Google Scholar 

  42. Ciardi, B., et al.: Prospects for detecting the 21 cm forest from the diffuse intergalactic medium with LOFAR. Mon. Not. R. Astron. Soc. 428, 1755 (2013)

    Article  ADS  Google Scholar 

  43. Cohen, A.S., Röttgering, H.J.A.: Probing fine-scale ionospheric structure with the very large array radio telescope. Astron. J. 138, 439 (2009)

    Article  ADS  Google Scholar 

  44. Cook, R.D., Tsai, C.-L., Wei, B.C.: Bias in nonlinear regression. Biometrika 73(3), 615–623 (1986). doi:10.1093/biomet/73.3.615

    Article  MathSciNet  MATH  Google Scholar 

  45. Cooray, A.: Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations. Phys. Rev. D 70, 063509 (2004)

    Article  ADS  Google Scholar 

  46. Cooray, A., Gong, Y., Smidt, J., Santos, M.G.: The near-infrared background intensity and anisotropies during the Epoch of Reionization. Astrophys. J. 756, 92 (2012)

    Article  ADS  Google Scholar 

  47. Cooray, A., et al.: Near-infrared background anisotropies from diffuse intrahalo light of galaxies. Nature 490, 514 (2012)

    Article  ADS  Google Scholar 

  48. Cristiani, S., et al.: The space density of high-redshift QSOs in the great observatories origins deep survey. Astrophys. J. 600, L119 (2004)

    Article  ADS  Google Scholar 

  49. Datta, K.K., Choudhury, T.R., Bharadwaj, S.: The multifrequency angular power spectrum of the Epoch of Reionization 21-cm signal. Mon. Not. R. Astron. Soc. 378, 119 (2007)

    Article  ADS  Google Scholar 

  50. Datta, K.K., Friedrich, M.M., Mellema, G., Iliev, I.T., Shapiro, P.R.: Prospects of observing a quasar H II region during the Epoch of Reionization with the redshifted 21-cm signal. Mon. Not. R. Astron. Soc. 424, 762 (2012)

    Article  ADS  Google Scholar 

  51. Datta, K.K., Majumdar, S., Bharadwaj, S., Choudhury, T.R.: Simulating the impact of HI fluctuations on matched filter search for ionized bubbles in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 391, 1900 (2008)

    Article  ADS  Google Scholar 

  52. Datta, K.K., Mellema, G., Mao, Y., Iliev, I.T., Shapiro, P.R., Ahn, K.: Light-cone effect on the reionization 21-cm power spectrum. Mon. Not. R. Astron. Soc. 424, 1877 (2012)

    Article  ADS  Google Scholar 

  53. de Oliveira-Costa, A., Tegmark, M., Gaensler, B.M., Jonas, J., Landecker, T.L., Reich, P.: A model of diffuse Galactic radio emission from 10 MHz to 100 GHz. Mon. Not. R. Astron. Soc. 388, 247 (2008)

    Article  ADS  Google Scholar 

  54. Di Matteo, T., Ciardi, B., Miniati, F.: The 21-cm emission from the reionization epoch: extended and point source foregrounds. Mon. Not. R. Astron. Soc. 355, 1053 (2004)

    Article  ADS  Google Scholar 

  55. Doré, O., Holder, G., Alvarez, M., Iliev, I.T., Mellema, G., Pen, U.-L., Shapiro, P.R.: Signature of patchy reionization in the polarization anisotropy of the CMB. Phys. Rev. D 76, 043002 (2007)

    Article  ADS  Google Scholar 

  56. Dunkley, J., et al.: The Atacama cosmology telescope: cosmological parameters from the 2008 power spectrum. Astrophys. J. 739, 52 (2011)

    Article  ADS  Google Scholar 

  57. Dvorkin, C., Hu, W., Smith, K.M.: B-mode CMB polarization from patchy screening during reionization. Phys. Rev. D 79, 107302 (2009)

    Article  ADS  Google Scholar 

  58. Eisenstein, D.J., et al.: SDSS-III: massive spectroscopic surveys of the distant universe, the Milky Way, and extra-solar planetary systems. Astron. J. 142, 72 (2011)

    Article  ADS  Google Scholar 

  59. Ellis, R.S., et al.: The abundance of star-forming galaxies in the redshift range 8.5–12: new results from the 2012 hubble ultra deep field campaign. Astrophys. J. 763, L7 (2013)

    Article  ADS  Google Scholar 

  60. Fan, X., et al.: Constraining the evolution of the ionizing background and the Epoch of Reionization with z\(\sim \)6 quasars. II. A sample of 19 quasars. Astron. J. 132, 117 (2006)

    Article  ADS  Google Scholar 

  61. Fernandez, E.R., Iliev, I.T., Komatsu, E., Shapiro, P.R.: The cosmic near infrared background. III. Fluctuations, reionization, and the effects of minimum mass and self-regulation. Astrophys. J. 750, 20 (2012)

    Article  ADS  Google Scholar 

  62. Fernandez, E.R., Komatsu, E., Iliev, I.T., Shapiro, P.R.: The cosmic near-infrared background. II. Fluctuations. Astrophys. J. 710, 1089 (2010)

    Article  ADS  Google Scholar 

  63. Fialkov, A., Barkana, R., Tseliakhovich, D., Hirata, C.M.: Impact of the relative motion between the dark matter and baryons on the first stars: semi-analytical modelling. Mon. Not. R. Astron. Soc. 424, 1335 (2012)

    Article  ADS  Google Scholar 

  64. Field, G.B.: The time relaxation of a resonance-line profile. Astrophys. J. 129, 551 (1959)

    Article  ADS  Google Scholar 

  65. Fowler, J.W., et al.: The Atacama cosmology telescope: a measurement of the 600 \(<\) ell \(<\) 8000 cosmic microwave background power spectrum at 148 GHz. Astrophys. J. 722, 1148 (2010)

    Article  ADS  Google Scholar 

  66. Fridman, P.A., Baan, W.A.: RFI mitigation methods in radio astronomy. Astron. Astrophys. 378, 327 (2001)

    Article  ADS  Google Scholar 

  67. Friedrich, M.M., Mellema, G., Alvarez, M.A., Shapiro, P.R., Iliev, I.T.: Topology and sizes of H II regions during cosmic reionization. Mon. Not. R. Astron. Soc. 413, 1353 (2011)

    Article  ADS  Google Scholar 

  68. Furlanetto, S.R.: The 21-cm forest. Mon. Not. R. Astron. Soc. 370, 1867 (2006)

    Article  ADS  Google Scholar 

  69. Furlanetto, S.R.: The global 21-centimeter background from high redshifts. Mon. Not. R. Astron. Soc. 371, 867 (2006)

    Article  ADS  Google Scholar 

  70. Furlanetto, S.R., Loeb, A.: The 21 centimeter forest: radio absorption spectra as probes of minihalos before reionization. Astrophys. J. 579, 1 (2002)

    Article  ADS  Google Scholar 

  71. Furlanetto, S.R., Oh, S.P., Briggs, F.H.: Cosmology at low frequencies: the 21 cm transition and the high-redshift universe. Phys. Rep. 433, 181 (2006)

    Article  ADS  Google Scholar 

  72. Furlanetto, S.R., Oh, S.P., Pierpaoli, E.: Effects of dark matter decay and annihilation on the high-redshift 21 cm background. Phys. Rev. D 74, 103502 (2006)

    Article  ADS  Google Scholar 

  73. Furlanetto, S.R., Zaldarriaga, M., Hernquist, L.: The growth of H II regions during reionization. Astrophys. J. 613, 1 (2004)

    Article  ADS  Google Scholar 

  74. Galli, S., Iocco, F., Bertone, G., Melchiorri, A.: CMB constraints on dark matter models with large annihilation cross section. Phys. Rev. D 80, 023505 (2009)

    Article  ADS  Google Scholar 

  75. Geil, P.M., Gaensler, B.M., Wyithe, J.S.B.: Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization. Mon. Not. R. Astron. Soc. 418, 516 (2011)

    Article  ADS  Google Scholar 

  76. Geil, P.M., Wyithe, J.S.B.: The impact of a percolating IGM on redshifted 21-cm observations of quasar HII regions. Mon. Not. R. Astron. Soc. 386, 1683 (2008)

    Article  ADS  Google Scholar 

  77. Ghosh, A., Prasad, J., Bharadwaj, S., Ali, S.S., Chengalur, J.N.: Characterizing foreground for redshifted 21 cm radiation: 150 MHz Giant Metrewave Radio Telescope observations. Mon. Not. R. Astron. Soc. 426, 3295 (2012)

    Article  ADS  Google Scholar 

  78. Gleser, L., Nusser, A., Benson, A.J.: Decontamination of cosmological 21-cm maps. Mon. Not. R. Astron. Soc. 391, 383 (2008)

    Article  ADS  Google Scholar 

  79. Gleser, L., Nusser, A., Ciardi, B., Desjacques, V.: The morphology of cosmological reionization by means of Minkowski functionals. Mon. Not. R. Astron. Soc. 370, 1329 (2006)

    Article  ADS  Google Scholar 

  80. Gluscevic, V.: Statistics of 21-cm fluctuations in cosmic reionization simulations: PDFs and difference PDFs. Mon. Not. R. Astron. Soc. 408, 2373 (2010)

    Article  ADS  Google Scholar 

  81. Gnedin N.Y., Jaffe A.H.: Secondary cosmic microwave background anisotropies from cosmological reionization. Astrophys. J. 551, 3 (2001)

    Article  ADS  Google Scholar 

  82. Golap, K., Shankar, N.U., Sachdev, S., Dodson, R., Sastry, C.V.: A low frequency radio telescope at Mauritius for a southern sky survey. J. Astrophys. Astron. 19, 35 (1998)

    Article  ADS  Google Scholar 

  83. Gong, Y., Cooray, A., Silva, M., Santos, M.G., Bock, J., Bradford, C.M., Zemcov, M.: Intensity mapping of the [C II] fine structure line during the Epoch of Reionization. Astrophys. J. 745, 49 (2012)

    Article  ADS  Google Scholar 

  84. Gong, Y., Cooray, A., Silva, M.B., Santos, M.G., Lubin P.: Probing reionization with intensity mapping of molecular and fine-structure lines. Astrophys. J. 728, L46 (2011)

    Article  ADS  Google Scholar 

  85. González-Serrano, J.I., Carballo, R., Vigotti, M., Benn, C.R., de Zotti, G., Fanti, R., Mack, K.H., Holt, J.: Decline of the space density of quasars between z\(=\)2 and z\(=\)4. Balt. Astron. 14, 374 (2005)

    ADS  Google Scholar 

  86. Gorjian, V., Wright, E.L., Chary, R.R.: Tentative detection of the cosmic infrared background at 2.2 and 3.5 microns using ground-based and space-based observations. Astrophys. J. 536, 550 (2000)

    Article  ADS  Google Scholar 

  87. Greenhill, L.J., Bernardi, G.: HI Epoch of Reionization arrays. ArXiv:1201.1700 (2012)

  88. Hales, S.E.G., Baldwin, J.E., Warner, P.J.: The 6C survey of radio sources. II—the zone delta = 30–51 deg, alpha = 08 h30 m–17 h30 m. Mon. Not. R. Astron. Soc. 919 (1988)

  89. Harker, G., et al.: Non-parametric foreground subtraction for 21-cm epoch of reionization experiments. Mon. Not. R. Astron. Soc. 397, 1138 (2009)

    Article  ADS  Google Scholar 

  90. Harker, G.J.A., et al.: Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics. Mon. Not. R. Astron. Soc. 393, 1449 (2009)

    Article  ADS  Google Scholar 

  91. Harker, G., et al.: Power spectrum extraction for redshifted 21-cm epoch of reionization experiments: the LOFAR case. Mon. Not. R. Astron. Soc. 405, 2492 (2010)

    ADS  Google Scholar 

  92. Harker, G., Pritchard, J., Burns, J., Bowman, J.: Signal extraction for sky-averaged 21-cm experiments In: American Astronomical Society Meeting Abstracts, vol. 219, p 304.01 (2012)

  93. Hauser, M.G., Dwek, E.: The cosmic infrared background: measurements and implications. Annu. Rev. Astron. Astrophys. 39, 249 (2001)

    Article  ADS  Google Scholar 

  94. Hewish, A.: The diffraction of radio waves in passing through a phase-changing ionosphere. Proc. R. Soc. Lond., A 209, 81 (1951)

    Article  ADS  Google Scholar 

  95. Hewish, A.: The diffraction of galactic radio waves as a method of investigating the irregular Q11 structure of the ionosphere. Proc. R. Soc. Lond., A 214, 494 (1952)

    Article  ADS  Google Scholar 

  96. Hirata, C.M.: Wouthuysen-Field coupling strength and application to high-redshift 21-cm radiation. Mon. Not. R. Astron. Soc. 367, 259 (2006)

    Article  ADS  Google Scholar 

  97. Hui, L., Haiman, Z.: The thermal memory of reionization history. Astrophys. J. 596, 9 (2003)

    Article  ADS  Google Scholar 

  98. Ichikawa, K., Barkana, R., Iliev, I.T., Mellema, G., Shapiro, P.R.: Measuring the history of cosmic reionization using the 21-cm probability distribution function from simulations. Mon. Not. R. Astron. Soc. 406, 2521 (2010)

    Article  ADS  Google Scholar 

  99. Iliev, I.T., Mellema, G., Pen, U.-L., Merz, H., Shapiro, P.R., Alvarez, M.A.: Simulating cosmic reionization at large scales—I. The geometry of reionization. Mon. Not. R. Astron. Soc. 369, 1625 (2006)

    Article  ADS  Google Scholar 

  100. Iliev, I.T., Pen, U.-L., Bond, J.R., Mellema, G., Shapiro, P.R.: The kinetic Sunyaev-Zel’dovich effect from radiative transfer simulations of patchy reionization. Astrophys. J. 660, 933 (2007)

    Article  ADS  Google Scholar 

  101. Iliev, I.T., Mellema, G., Pen, U., Bond, J.R., Shapiro, P.R.: Current models of the observable consequences of cosmic reionization and their detectability. Mon. Not. R. Astron. Soc. 384, 863 (2008)

    Article  ADS  Google Scholar 

  102. Iliev, I.T., Mellema, G., Shapiro, P.R., Pen, U.-L., Mao, Y., Koda, J., Ahn, K.: Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?Mon. Not. R. Astron. Soc. 423, 2222 (2012)

    Article  ADS  Google Scholar 

  103. Intema, H.T., van der Tol, S., Cotton, W.D., Cohen, A.S., van Bemmel, I.M., Röttgering, H.J.A.: Ionospheric calibration of low frequency radio interferometric observations using the peeling scheme. I. Method description and first results. Astron. Astrophys. 501, 1185 (2009)

    Article  ADS  Google Scholar 

  104. Ioka, K., Mészáros, P.: Radio afterglows of gamma-ray bursts and hypernovae at high redshift and their potential for 21 centimeter absorption studies. Astrophys. J. 619, 684 (2005)

    Article  ADS  Google Scholar 

  105. Jackson, C.: The extragalactic radio sky at faint flux densities. Publ. Astron. Soc. Aust. 22, 36 (2005)

    Article  ADS  Google Scholar 

  106. Jelić, V., et al.: A cross-correlation study between the cosmological 21 cm signal and the kinetic Sunyaev-Zel’dovich effect. Mon. Not. R. Astron. Soc. 402, 2279 (2010)

    Article  ADS  Google Scholar 

  107. Jelić, V., Zaroubi, S., Labropoulos, P., Bernardi, G., de Bruyn, A.G., Koopmans, L.V.E.: Realistic simulations of the Galactic polarized foreground: consequences for 21-cm reionization detection experiments. Mon. Not. R. Astron. Soc. 409, 1647 (2010)

    Article  ADS  Google Scholar 

  108. Jelić, V., et al.: Foreground simulations for the LOFAR-epoch of reionization experiment. Mon. Not. R. Astron. Soc. 389, 1319 (2008)

    Article  ADS  Google Scholar 

  109. Jensen, H., Laursen, P., Mellema, G., Iliev, I.T., Sommer-Larsen, J., Shapiro, P.R.: On the use of Ly\(\alpha \) emitters as probes of reionization. Mon. Not. R. Astron. Soc. 428, 1366 (2013)

    Article  ADS  Google Scholar 

  110. Jester, S., Falcke, H.: Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev.Q11 53, 1 (2009)

    Article  Google Scholar 

  111. Joudaki, S., Doré, O., Ferramacho, L., Kaplinghat, M., Santos, M.G.: Primordial non-Gaussianity from the 21 cm power spectrum during the Epoch of Reionization. Phys. Rev. Lett. 107, 131304 (2011)

    Article  ADS  Google Scholar 

  112. Kashlinsky, A., Arendt, R.G., Mather, J., Moseley, S.H.: Tracing the first stars with fluctuations of the cosmic infrared background. Nature 438, 45 (2005)

    Article  ADS  Google Scholar 

  113. Kashlinsky, A., Arendt, R.G., Ashby, M.L.N., Fazio, G.G., Mather, J., Moseley, S.H.: New measurements of the cosmic infrared background fluctuations in deep Spitzer/IRAC survey data and their cosmological implications. Astrophys. J. 753, 63 (2012)

    Article  ADS  Google Scholar 

  114. Kazemi, S., Yatawatta, S., Zaroubi, S., Lampropoulos, P., de Bruyn, A.G., Koopmans, L.V.E., Noordam, J.: Radio interferometric calibration using the SAGE algorithm. Mon. Not. R. Astron. Soc. 414, 1656 (2011)

    Article  ADS  Google Scholar 

  115. Khatri, R., Wandelt, B.D.: 21-cm radiation: a new probe of variation in the fine-structure constant. Phys. Rev. Lett. 98, 111301 (2007)

    Article  ADS  Google Scholar 

  116. Khatri, R., Wandelt, B.D.: Cosmic (super)string constraints from 21 cm radiation. Phys. Rev. Lett. 100, 091302 (2008)

    Article  ADS  Google Scholar 

  117. Knox, L.: Precision measurement of the mean curvature. Phys. Rev. D 73, 023503 (2006)

    Article  ADS  Google Scholar 

  118. Koopmans, L.V.E.: Ionospheric power-spectrum tomography in radio interferometry. Astrophys. J. 718, 963 (2010)

    Article  ADS  Google Scholar 

  119. Labbé, I., et al.: Star formation rates and stellar masses of z \(=\) 7–8 galaxies from IRAC observations of the WFC3/IR early release science and the HUDF fields. Astrophys. J. 716, L103 (2010)

    Article  ADS  Google Scholar 

  120. Laing, R.A., Riley, J.M., Longair, M.S.: Bright radio sources at 178 MHz—flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon. Not. R. Astron. Soc. 204, 151 (1983)

    ADS  Google Scholar 

  121. Landecker, T.L., Wielebinski, R.: The Galactic Metre Wave radiation: a two-frequency survey between declinations +25° and -25° and the preparation of a map of the whole sky. Aust. J. Phys., Astrophys. Suppl. 16, 1 (1970)

    ADS  Google Scholar 

  122. Laureijs, R., et al.: Euclid definition study report. ArXiv:1110.3193 (2011)

  123. Lee, K.: Constraining extended reionization models through arcminute-scale CMB measurements. ArXiv:0902.1530 (2009)

  124. Lidz, A., Furlanetto, S.R., Oh, S.P., Aguirre, J., Chang, T.-C., Doré, O., Pritchard, J.R.: Intensity mapping with carbon monoxide emission lines and the redshifted 21 cm line. Astrophys. J. 741, 70 (2011)

    Article  ADS  Google Scholar 

  125. Lidz, A., Zahn, O., Furlanetto, S.R., McQuinn, M., Hernquist, L., Zaldarriaga, M.: Probing reionization with the 21 cm galaxy cross-power spectrum. Astrophys. J. 690, 252 (2009)

    Article  ADS  Google Scholar 

  126. Lidz, A., Zahn, O., McQuinn, M., Zaldarriaga, M., Hernquist, L.: Detecting the rise and fall of 21 cm fluctuations with the Murchison Widefield array. Astrophys. J. 680, 962 (2008)

    Article  ADS  Google Scholar 

  127. Loeb, A.: The race between stars and quasars in reionizing cosmic hydrogen. J. Cosmol. Astropart. Phys. 3, 22 (2009)

    Article  ADS  Google Scholar 

  128. Loeb, A., Zaldarriaga, M.: Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation. Phys. Rev. Lett. 92, 211301 (2004)

    Article  ADS  Google Scholar 

  129. Lorenzoni, S., Bunker, A.J., Wilkins, S.M., Jarvis, M.J., Caruana, J.: Star-forming galaxies at z ≈ 8–9 from Hubble space telescope/WFC3: implications for reionization. Mon. Not. R. Astron. Soc. 414, 1455 (2011)

    Article  ADS  Google Scholar 

  130. Mack, K.J., Wesley, D.H.: Primordial black holes in the Dark Ages: observational prospects for future 21 cm surveys. ArXiv:0805.1531 (2008)

  131. Mack, K.J., Wyithe, J.S.B.: Detecting the redshifted 21 cm forest during reionization. Mon. Not. R. Astron. Soc. 425, 2988 (2012)

    Article  ADS  Google Scholar 

  132. Madau, P., Silk, J.: Population III and the near-infrared background excess. Mon. Not. R. Astron. Soc. 359, L37 (2005)

    Article  ADS  Google Scholar 

  133. Madau, P., Meiksin, A., Rees, M.J.: 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429 (1997)

    Article  ADS  Google Scholar 

  134. Maio, U., Koopmans, L.V.E., Ciardi, B.: The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 412, L40 (2011)

    Article  ADS  Google Scholar 

  135. Majumdar, S., Bharadwaj, S., Datta, K.K., Choudhury, T.R.: The impact of anisotropy from finite light traveltime on detecting ionized bubbles in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 413, 1409 (2011)

    Article  ADS  Google Scholar 

  136. Majumdar, S., Bharadwaj, S., Choudhury, T.R.: Constrainingquasar and intergalactic medium properties through bubble detection in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 426, 3178 (2012)

    Article  ADS  Google Scholar 

  137. Mao, X.-C.: Subtracting foregrounds from interferometric measurements of the redshifted 21 cm emission. Astrophys. J. 744, 29 (2012)

    Article  ADS  Google Scholar 

  138. Mao, Y., Tegmark, M., McQuinn, M., Zaldarriaga, M., Zahn, O.: How accurately can 21 cm tomography constrain cosmology?Phys. Rev. D 78, 023529 (2008)

    Article  ADS  Google Scholar 

  139. Mao, Y., Shapiro, P.R., Mellema, G., Iliev, I.T., Koda, J., Ahn, K.: Redshift-space distortion of the 21-cm background from the epoch of reionization—I. Methodology re-examined. Mon. Not. R. Astron. Soc. 422, 926 (2012)

    Article  ADS  Google Scholar 

  140. Mapelli, M., Ferrara, A., Pierpaoli, E.: Impact of dark matter decays and annihilations on reionization. Mon. Not. R. Astron. Soc. 369, 1719 (2006)

    Article  ADS  Google Scholar 

  141. Matejek, M.S., Morales, M.F.: Correcting for the ionosphere in the uv-plane. ArXiv:0911.3942 (2009)

  142. Mather, J.C., et al.: A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. Astrophys. J. 354, L37 (1990)

    Article  ADS  Google Scholar 

  143. Matsumoto, T., et al.: Near infrared extragalactic background. In: Lemke, D., Stickel, M., Wilke, K. (eds.) Lecture Notes in Physics. ISO Survey of a Dusty Universe, vol. 548, p 96. Springer, Berlin (2000)

    Chapter  Google Scholar 

  144. Matsumoto, T., et al.: AKARI observation of the fluctuation of the near-infrared background. Astrophys. J. 742, 124 (2011)

    Article  ADS  Google Scholar 

  145. McKinley, B., et al.: Low-frequency observations of the moon with the Murchison Widefield array. Astron. J. 145, 23 (2013)

    Article  ADS  Google Scholar 

  146. McQuinn, M., O’Leary, R.M.: The impact of the supersonic Baryon-Dark matter velocity difference on the z ∼ 20 21 cm background. Astrophys. J. 760, 3 (2012)

    Article  ADS  Google Scholar 

  147. McQuinn, M., Furlanetto, S.R., Hernquist, L., Zahn, O., Zaldarriaga, M.: The kinetic Sunyaev-Zel’dovich effect from reionization. Astrophys. J. 630, 643 (2005)

    Article  ADS  Google Scholar 

  148. McQuinn, M., Zahn, O., Zaldarriaga, M., Hernquist, L., Furlanetto, S.R.: Cosmological parameter estimation using 21 cm radiation from the epoch of reionization. Astrophys. J. 653, 815 (2006)

    Article  ADS  Google Scholar 

  149. McQuinn, M., Hernquist, L., Zaldarriaga, M., Dutta, S.: Studying reionization with Ly\(\alpha \) emitters. Mon. Not. R. Astron. Soc. 381, 75 (2007)

    Article  ADS  Google Scholar 

  150. McQuinn, M., Lidz, A., Zahn, O., Dutta, S., Hernquist, L., Zaldarriaga, M.: The morphology of HII regions during reionization. Mon. Not. R. Astron. Soc. 377, 1043 (2007)

    Article  ADS  Google Scholar 

  151. Meiksin, A.: The micro-structure of the intergalactic medium—I. The 21 cm signature from dynamical minihaloes. Mon. Not. R. Astron. Soc. 417, 1480 (2011)

    Article  ADS  Google Scholar 

  152. Mellema, G., Iliev, I.T., Pen, U.-L., Shapiro, P.R.: Simulating cosmic reionization at large scales—II. The 21-cm emission features and statistical signals. Mon. Not. R. Astron. Soc. 372, 679 (2006)

    Article  ADS  Google Scholar 

  153. Mesinger, A.: Was reionization complete by z ∼ 5–6?Mon. Not. R. Astron. Soc. 407, 1328 (2010)

    Article  ADS  Google Scholar 

  154. Mesinger, A., Furlanetto, S., Cen, R.: 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. Mon. Not. R. Astron. Soc. 411, 955 (2011)

    Article  ADS  Google Scholar 

  155. Mesinger, A., McQuinn, M., Spergel, D.N.: The kinetic Sunyaev-Zel’dovich signal from inhomogeneous reionization: a parameter space study. Mon. Not. R. Astron. Soc. 422, 1403 (2012)

    Article  ADS  Google Scholar 

  156. Morales, M.F., Hewitt, J.: Toward epoch of reionization measurements with wide-field radio observations. Astrophys. J. 615, 7 (2004)

    Article  ADS  Google Scholar 

  157. Mortlock, D.J., et al.: A luminous quasar at a redshift of z = 7.085. Nature 474, 616 (2011)

    Article  ADS  Google Scholar 

  158. Nusser, A.: The Alcock-Paczyński test in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 364, 743 (2005)

    Article  ADS  Google Scholar 

  159. Oesch, P.A., et al.: Probing the dawn of galaxies at z∼9–12: new constraints from HUDF12/XDF and CANDELS data. ArXiv:1301.6162 (2013)

  160. Offringa, A.R.: Algorithms for radio interference detection and removal. PhD thesis, Kapteyn Astronomical Institute, University of Groningen (2012)

    Google Scholar 

  161. Offringa, A.R., de Bruyn A.G., Biehl, M., Zaroubi, S., Bernardi, G., Pandey, V.N.: Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc. 405, 155 (2010)

    ADS  Google Scholar 

  162. Offringa, A.R., et al.: The LOFAR radio environment. Astron. Astrophys. 549, A11 (2013)

    Article  ADS  Google Scholar 

  163. Ord, S.M., et al.: Interferometric imaging with the 32 element Murchison wide-field array. Publ. Astron. Soc. Pac. 122, 1353 (2010)

    Article  ADS  Google Scholar 

  164. Ostriker, J.P., Vishniac, E.T.: Generation of microwave background fluctuations from nonlinear perturbations at the ERA of galaxy formation. Astrophys. J. 306, L51 (1986)

    Article  ADS  Google Scholar 

  165. Ouchi, M., et al.: Statistics of 207 Ly\(\alpha \) emitters at a redshift near 7: constraints on reionization and galaxy formation models. Astrophys. J. 723, 869 (2010)

    Article  ADS  Google Scholar 

  166. Paciga, G., et al.: The GMRT epoch of reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z ≈ 8.6. Mon. Not. R. Astron. Soc. 413, 1174 (2011)

    Article  ADS  Google Scholar 

  167. Paciga, G., et al.: A refined foreground-corrected limit on the HI power spectrum at z=8.6 from the GMRT epoch of reionization experiment. ArXiv:1301.5906 (2013)

  168. Padmanabhan, N., Finkbeiner, D.P.: Detecting dark matter annihilation with CMB polarization: signatures and experimental prospects. Phys. Rev. D 72, 023508 (2005)

    Article  ADS  Google Scholar 

  169. Pan, T., Barkana, R.: Measuring the history of cosmic reionization using the 21-cm difference PDF. ArXiv:1209.5751 (2012)

  170. Pandolfi, S., et al.: Impact of general reionization scenarios on extraction of inflationary parameters. Phys. Rev. D 82, 123527 (2010)

    Article  ADS  Google Scholar 

  171. Parsons, A.R., Backer, D.C.: Calibration of low-frequency, wide-field radio interferometers using delay/delay-rate filtering. Astron. J. 138, 219 (2009)

    Article  ADS  Google Scholar 

  172. Parsons, A.R., et al.: The precision array for probing the epoch of re-ionization: eight station results. Astron. J. 139, 1468 (2010)

    Article  ADS  Google Scholar 

  173. Parsons, A., Pober, J., McQuinn, M., Jacobs, D., Aguirre, J.: A sensitivity and array-configuration study for measuring the power spectrum of 21 cm emission from reionization. Astrophys. J. 753, 81 (2012)

    Article  ADS  Google Scholar 

  174. Parsons, A.R., Pober, J.C., Aguirre, J.E., Carilli, C.L., Jacobs, D.C., Moore, D.F.: A per-baseline, delay-spectrum technique for accessing the 21 cm cosmic reionization signature. Astrophys. J. 756, 165 (2012)

    Article  ADS  Google Scholar 

  175. Pearson, R.: Scrub data with scale-invariant nonlinear digital filters. EDN. www.edn.com (2002)

  176. Pen, U.-L., Chang, T.-C., Hirata, C.M., Peterson, J.B., Roy, J., Gupta, Y., Odegova, J., Sigurdson, K.: The GMRT EoR experiment: limits on polarized sky brightness at 150 MHz. Mon. Not. R. Astron. Soc. 399, 181 (2009)

    Article  ADS  Google Scholar 

  177. Petrovic, N., Oh, S.P.: Systematic effects of foreground removal in 21-cm surveys of reionization. Mon. Not. R. Astron. Soc. 413, 2103 (2011)

    Article  ADS  Google Scholar 

  178. Pindor, B., Wyithe, J.S.B., Mitchell, D.A., Ord, S.M., Wayth, R.B., Greenhill, L.J.: Subtraction of bright point sources from synthesis images of the epoch of reionization. Publ. Astron. Soc. Aust. 28, 46 (2011)

    Article  ADS  Google Scholar 

  179. Pober, J.C., et al.: Opening the 21 cm EoR window: measurements of foreground isolation with PAPER. ArXiv:1301.7099 (2013)

  180. Prasad, J., Chengalur, J.: FLAGCAL: a flagging and calibration package for radio interferometric data. Exp. Astron. 33, 157 (2012)

    Article  ADS  Google Scholar 

  181. Prasad, P., Wijnholds, S.J.: AARTFAAC: towards a 24\(\times \)7, all-sky monitor for LOFAR. ArXiv:1205.3056 (2012)

  182. Pritchard, J.R., Furlanetto, S.R.: 21-cm fluctuations from inhomogeneous X-ray heating before reionization. Mon. Not. R. Astron. Soc. 376, 1680 (2007)

    Article  ADS  Google Scholar 

  183. Pritchard, J.R., Loeb, A.: Evolution of the 21 cm signal throughout cosmic history. Phys. Rev. D 78, 103511 (2008)

    Article  ADS  Google Scholar 

  184. Pritchard, J.R., Loeb, A.: Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal. Phys. Rev. D 82, 023006 (2010)

    Article  ADS  Google Scholar 

  185. Pritchard, J.R., Loeb, A.: 21 cm cosmology in the 21st century. Rep. Prog. Phys. 75, 086901 (2012)

    Article  ADS  Google Scholar 

  186. Ratcliffe, J.A.: Some aspects of diffraction theory and their application to the ionosphere. Rep. Prog. Phys. 19, 188 (1956)

    Article  ADS  Google Scholar 

  187. Ricotti, M., Ostriker, J.P., Mack, K.J.: Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829 (2008)

    Article  ADS  Google Scholar 

  188. Rogers, A.E.E., Bowman, J.D.: Spectral index of the diffuse radio background measured from 100 to 200 MHz. Astron. J. 136, 641 (2008)

    Article  ADS  Google Scholar 

  189. Roy, J., Gupta, Y., Pen, U.-L., Peterson, J.B., Kudale, S., Kodilkar, J.: A real-time software backend for the GMRT. Exp. Astron. 28, 25 (2010)

    Article  ADS  Google Scholar 

  190. Salvaterra, R., Ferrara, A.: The imprint of the cosmic dark ages on the near-infrared background. Mon. Not. R. Astron. Soc. 339, 973 (2003)

    Article  ADS  Google Scholar 

  191. Salvaterra, R., Ferrara, A.Mon. Not. R. Astron. Soc. 367, L11 (2006)

    Article  ADS  Google Scholar 

  192. Salvaterra, R., Ciardi, B., Ferrara, A., Baccigalupi, C.: Reionization history from coupled cosmic microwave background/21-cm line data. Mon. Not. R. Astron. Soc. 360, 1063 (2005)

    Article  ADS  Google Scholar 

  193. Santos, M.G., Cooray, A.: Cosmological and astrophysical parameter measurements with 21-cm anisotropies during the era of reionization. Phys. Rev. D 74, 083517 (2006)

    Article  ADS  Google Scholar 

  194. Santos, M.R., Bromm, V., Kamionkowski, M.: The contribution of the first stars to the cosmic infrared background. Mon. Not. R. Astron. Soc. 336, 1082 (2002)

    Article  ADS  Google Scholar 

  195. Santos, M.G., Cooray, A., Haiman, Z., Knox, L., Ma, C.-P.: Small-scale cosmic microwave background temperature and polarization anisotropies due to patchy reionization. Astrophys. J. 598, 756 (2003)

    Article  ADS  Google Scholar 

  196. Santos, M.G., Cooray, A., Knox, L.: Multifrequency analysis of 21 centimeter fluctuations from the era of reionization. Astrophys. J. 625, 575 (2005)

    Article  ADS  Google Scholar 

  197. Santos, M.G., Amblard, A., Pritchard, J., Trac, H., Cen, R., Cooray, A.: Cosmic reionization and the 21 cm signal: comparison between an analytical model and a simulation. Astrophys. J. 689, 1 (2008)

    Article  ADS  Google Scholar 

  198. Santos, M.G., Ferramacho, L., Silva, M.B., Amblard, A., Cooray, A.: Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs. Mon. Not. R. Astron. Soc. 406, 2421 (2010)

    Article  ADS  Google Scholar 

  199. Santos, M.G., Silva, M.B., Pritchard, J.R., Cen, R., Cooray, A.: Probing the first galaxies with the square kilometer array. Astron. Astrophys. 527, A93 (2011)

    Article  ADS  Google Scholar 

  200. Schaffer, K.K., et al.: The first public release of south pole telescope data: maps of a 95 deg2 Field from 2008 observations. Astrophys. J. 743, 90 (2011)

    Article  ADS  Google Scholar 

  201. Schmidt, M., Schneider, D.P., Gunn, J.E.: Spectrscopic CCD surveys for quasars at large redshift. IV. Evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astron. J. 110, 68 (1995)

    Article  ADS  Google Scholar 

  202. Semelin, B., Combes, F., Baek, S.: Lyman-alpha radiative transfer during the epoch of reionization: contribution to 21-cm signal fluctuations. Astron. Astrophys. 474, 365 (2007)

    Article  ADS  Google Scholar 

  203. Shapiro, P.R., Iliev, I.T., Alvarez, M.A., Scannapieco, E.: Relativistic ionization fronts. Astrophys. J. 648, 922 (2006)

    Article  ADS  Google Scholar 

  204. Shapiro, P.R., et al.: Simulating cosmic reionization and the radiation backgrounds from the epoch of reionization. In: Umemura, M., Omukai, K. (eds.) American Institute of Physics Conference Series, vol. 1480, pp 248–260 (2012)

  205. Shapiro, P.R., Mao, Y., Iliev, I.T., Mellema, G., Datta, K.K., Ahn, K., Koda, J.: Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization? ArXiv:1211.2036 (2012)

  206. Shaver, P.A., Windhorst, R.A., Madau, P., de Bruyn, A.G.: Can the reionization epoch be detected as a global signature in the cosmic background?Astron. Astrophys. 345, 380 (1999)

    ADS  Google Scholar 

  207. Shirokoff, E., et al.: Improved constraints on cosmic microwave background secondary anisotropies from the complete 2008 south pole telescope data. Astrophys. J. 736, 61 (2011)

    Article  ADS  Google Scholar 

  208. Slosar, A., Cooray, A., Silk, J.I.: Cross-correlation studies as a probe of reionization physics. Mon. Not. R. Astron. Soc. 377, 168 (2007)

    Article  ADS  Google Scholar 

  209. Sun, X.H., Reich, W.: Simulated square kilometre array maps from Galactic 3D-emission models. Astron. Astrophys. 507, 1087 (2009)

    Article  ADS  Google Scholar 

  210. Sun, X.H., Reich, W., Waelkens, A., Enßlin, T.A.: Radio observational constraints on Galactic 3D-emission models. Astron. Astrophys. 477, 573 (2008)

    Article  ADS  Google Scholar 

  211. Sunyaev, R.A., Zeldovich, Y.B.: Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3 (1970)

    ADS  Google Scholar 

  212. Tashiro, H., Aghanim, N., Langer, M., Douspis, M., Zaroubi, S.: The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization. Mon. Not. R. Astron. Soc. 389, 469 (2008)

    Article  ADS  Google Scholar 

  213. Tashiro, H., Aghanim, N., Langer, M., Douspis, M., Zaroubi, S., Jelić, V.: Second order cross-correlation between kinetic Sunyaev-Zel’dovich effect and 21-cm fluctuations from the epoch of reionization. Mon. Not. R. Astron. Soc. 414, 3424 (2011)

    Article  ADS  Google Scholar 

  214. Theuns, T., Schaye, J., Zaroubi, S., Kim, T., Tzanavaris, P., Carswell, B.: Constraints on reionization from the thermal history of the intergalactic medium. Astrophys. J. 567, L103 (2002)

    Article  ADS  Google Scholar 

  215. Thomas, R.M., et al.: Fast large-scale reionization simulations. Mon. Not. R. Astron. Soc. 393, 32 (2009)

    Article  ADS  Google Scholar 

  216. Thompson, A.R., Moran, J.M., Swenson, Jr. G.W.: Interferometry and Synthesis in Radio Astronomy, 2nd edn.Wiley, New York (2001)

    Book  Google Scholar 

  217. Thompson, R.I., Eisenstein, D., Fan, X., Rieke, M., Kennicutt, R.C.: Constraints on the cosmic near-infrared background excess from NICMOS deep field observations. Astrophys. J. 657, 669 (2007)

    Article  ADS  Google Scholar 

  218. Tingay, S.J., et al.: The Murchison Widefield array: the square kilometre array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, 7 (2013)

    Article  ADS  Google Scholar 

  219. Toma, K., Sakamoto, T., Mészáros, P.: Population III gamma-ray burst afterglows: constraints on stellar masses and external medium densities. Astrophys. J. 731, 127 (2011)

    Article  ADS  Google Scholar 

  220. Tozzi, P., Madau, P., Meiksin, A., Rees, M.J.: Radio signatures of H I at high redshift: mapping the end of the “Dark Ages”. Astrophys. J. 528, 597 (2000)

    Article  ADS  Google Scholar 

  221. Trac, H.Y., Gnedin, N.Y.: Computer simulations of cosmic reionization. Adv. Sci. Lett. Q11 4, 228 (2011)

    Article  Google Scholar 

  222. Trott, C.M., Wayth, R.B., Tingay, S.J.: The impact of point-source subtraction residuals on 21 cm epoch of reionization estimation. Astrophys. J. 757, 101 (2012)

    Article  ADS  Google Scholar 

  223. Tseliakhovich, D., Hirata, C.: Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010)

    Article  ADS  Google Scholar 

  224. van Weeren, R.J., et al.: First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256. Astron. Astrophys. 543, A43 (2012)

    Article  ADS  Google Scholar 

  225. Visbal, E., Loeb, A.: Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines. J. Cosmol. Astropart. Phys. 11, 16 (2010)

    Article  ADS  Google Scholar 

  226. Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D., Hirata, C.: The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70 (2012)

    ADS  Google Scholar 

  227. Vishniac, E.T.: Reionization and small-scale fluctuations in the microwave background. Astrophys. J. 322, 597 (1987)

    Article  ADS  Google Scholar 

  228. Volonteri, M., Gnedin, N.Y.: Relative role of stars and quasars in cosmic reionization. Astrophys. J. 703, 2113 (2009)

    Article  ADS  Google Scholar 

  229. Vonlanthen, P., Semelin, B., Baek, S., Revaz, Y.: Distinctive rings in the 21 cm signal of the epoch of reionization. Astron. Astrophys. 532, A97 (2011)

    Article  ADS  Google Scholar 

  230. Waelkens, A., Jaffe, T., Reinecke, M., Kitaura, F.S., Enßlin, T.A.: Simulating polarized Galactic synchrotron emission at all frequencies. The Hammurabi code. Astron. Astrophys. 495, 697 (2009)

    Article  ADS  Google Scholar 

  231. Wang, X., Tegmark, M., Santos, M.G., Knox, L.: 21 cm tomography with foregrounds. Astrophys. J. 650, 529 (2006)

    Article  ADS  Google Scholar 

  232. Wiersma, R.P.C., et al.: LOFAR insights into the epoch of reionization from the cross power spectrum of 21 cm emission and galaxies. ArXiv:1209.5727 (2012)

  233. Williams, C.L., et al.: Low-frequency imaging of fields at high galactic latitude with the Murchison Widefield array 32 element prototype. Astrophys. J. 755, 47 (2012)

    Article  ADS  Google Scholar 

  234. Willott, C.J., et al.: The Canada-France high-z quasar survey: nine new quasars and the luminosity function at redshift 6. Astron. J. 139, 906 (2010)

    Article  ADS  Google Scholar 

  235. Wilman, R.J., et al.: A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. Mon. Not. R. Astron. Soc. 388, 1335 (2008)

    ADS  Google Scholar 

  236. Wright, E.L., Reese, E.D.: Detection of the cosmic infrared background at 2.2 and 3.5 microns using DIRBE observations. Astrophys. J. 545, 43 (2000)

    Article  ADS  Google Scholar 

  237. Wyithe, J.S.B., Loeb, A., Barnes, D.G.: Prospects for redshifted 21 cm observations of quasar H II regions. Astrophys. J. 634, 715 (2005)

    Article  ADS  Google Scholar 

  238. Xu, Y., Chen, X., Fan, Z., Trac, H., Cen, R.: The 21 cm forest as a probe of the reionization and the temperature of the intergalactic medium. Astrophys. J. 704, 1396 (2009)

    Article  ADS  Google Scholar 

  239. Xu, Y., Ferrara, A., Chen, X.: The earliest galaxies seen in 21 cm line absorption. Mon. Not. R. Astron. Soc. 410, 2025 (2011)

    ADS  Google Scholar 

  240. Yatawatta, S.: Fundamental limitations of pixel based image deconvolution in radio astronomy. ArXiv:1008.1892 (2010)

  241. Yatawatta, S.: Radio astronomical image deconvolution using prolate spheroidal wave functions. ArXiv:1101.2830 (2011)

  242. Yatawatta, S., Zaroubi, S., de Bruyn, G., Koopmans, L., Noordam, J.: Radio interferometric calibration using the SAGE algorithm. ArXiv:0810.5751 (2008)

  243. Yatawatta, S., et al.: Initial deep LOFAR observations of epoch of reionization windows. I. The north celestial pole. Astron. Astrophys. A136, 550 (2013)

    Google Scholar 

  244. Yu, Q.: The apparent shape of the Strömgren sphere around the highest redshift QSOs with Gunn–Peterson troughs. Astrophys. J. 623, 683 (2005)

    Article  ADS  Google Scholar 

  245. Yue, B., Ferrara, A., Salvaterra, R., Chen, X.: The contribution of high-redshift galaxies to the near-infrared background. Mont. Not. R. Astron. Soc. 431, 383 (2013)

    Google Scholar 

  246. Zahn, O., Zaldarriaga, M., Hernquist, L., McQuinn, M.: The influence of nonuniform reionization on the CMB. Astrophys. J. 630, 657 (2005)

    Article  ADS  Google Scholar 

  247. Zahn, O., Lidz, A., McQuinn, M., Dutta, S., Hernquist, L., Zaldarriaga, M., Furlanetto, S.R.: Simulations and analytic calculations of bubble growth during hydrogen reionization. Astrophys. J. 654, 12 (2007)

    Article  ADS  Google Scholar 

  248. Zahn, O., et al.: Cosmic microwave background constraints on the duration and timing of reionization from the South Pole telescope. Astrophys. J. 756, 65 (2012)

    Article  ADS  Google Scholar 

  249. Zaldarriaga, M., Furlanetto, S.R., Hernquist, L.: 21 centimeter fluctuations from cosmic gas at high redshifts. Astrophys. J. 608, 622 (2004)

    Article  ADS  Google Scholar 

  250. Zaroubi, S., Thomas, R.M., Sugiyama, N., Silk, J.: Heating of the intergalactic medium by primordial miniquasars. Mon. Not. R. Astron. Soc. 375, 1269 (2007)

    Article  ADS  Google Scholar 

  251. Zaroubi, S., et al.: Imaging neutral hydrogen on large scales during the epoch of reionization with LOFAR. Mon. Not. R. Astron. Soc. 425, 2964 (2012)

    Article  ADS  Google Scholar 

  252. Zeldovich, Y.B., Sunyaev, R.A.: The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 4, 301 (1969)

    Article  ADS  Google Scholar 

  253. Zhang, P., Pen, U.-L., Trac, H.: Precision era of the kinetic Sunyaev-Zel’dovich effect: simulations, analytical models and observations and the power to constrain reionization. Mon. Not. R. Astron. Soc. 347, 1224 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrelt Mellema.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellema, G., Koopmans, L.V.E., Abdalla, F.A. et al. Reionization and the Cosmic Dawn with the Square Kilometre Array. Exp Astron 36, 235–318 (2013). https://doi.org/10.1007/s10686-013-9334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-013-9334-5

Keywords

Navigation