Skip to main content
Log in

EIDOSCOPE: particle acceleration at plasma boundaries

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely separated satellites that provides the unique capability to measure the 3D electric field with high accuracy and sensitivity. All EIDO instrumentation are state-of-the-art technology with heritage from many recent missions. The EIDOSCOPE orbit will be close to equatorial with apogee 25-30 RE and perigee 8-10 RE. In the course of one year the orbit will cross all the major plasma boundaries in the outer magnetosphere; bow shock, magnetopause and magnetotail current sheets, jet fronts and turbulent boundary layers. EIDO offers excellent cost/benefits for ESA, as for only a fraction of an M-class mission cost ESA can become an integral part of a major multi-agency L-class level mission that addresses outstanding science questions for the benefit of the European science community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alfvén, H.: The plasma universe. Phys. Today 39, 22–27 (1986). doi:10.1063/1.881039

    Article  Google Scholar 

  2. Yamada, M., Kulsrud, R., Ji, H.: Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010). doi:10.1103/RevModPhys.82.603

    Article  ADS  Google Scholar 

  3. Martin, P., Apolloni, L., Puiatti, M., Adamek, J., Agostini, M., Alfier, A., Annibaldi, S., Antoni, V., Auriemma, F., Barana, O., Baruzzo, M., Bettini, P., Bolzonella, T., Bonfiglio, D., Bonomo, F., Brombin, M., Brotankova, J., Buffa, A., Buratti, P., Canton, A., Cappello, S., Carraro, L., Cavazzana, R., Cavinato, M., Chapman, B., Chitarin, G., Dal Bello, S., De Lorenzi, A., De Masi, G., Escande, D., Fassina, A., Ferro, A., Franz, P., Gaio, E., Gazza, E., Giudicotti, L., Gnesotto, F., Gobbin, M., Grando, L., Guazzotto, L., Guo, S., Igochine, V., Innocente, P., Liu, Y., Lorenzini, R., Luchetta, A., Manduchi, G., Marchiori, G., Marcuzzi, D., Marrelli, L., Martini, S., Martines, E., Mccollam, K., Menmuir, S., Milani, F., Moresco, M., Novello, L., Ortolani, S., Paccagnella, R., Pasqualotto, R., Peruzzo, S., Piovan, R., Piovesan, P., Piron, L., Pizzimenti, A., Pomaro, N., Predebon, I., Reusch, J., Rostagni, G., Rubinacci, G., Sarff, J., Sattin, F., Scarin, P., Serianni, G., Sonato, P., Spada, E., Soppelsa, A., Spagnolo, S., Spolaore, M., Spizzo, G., Taliercio, C., Terranova, D., Toigo, V., Valisa, M., Vianello, N., Villone, F., White, R., Yadikin, D., Zaccaria, P., Zamengo, A., Zanca, P., Zaniol, B., Zanotto, L., Zilli, E., Zohm, H., Zuin, M.: Overview of RFX-mod results. Nucl. Fusion 49, 104019 (2009)

    Article  ADS  Google Scholar 

  4. Cordey, J., Balet, B., Bartlett, D., Budny, R., Christiansen, J., Conway, G., Eriksson, L., Fishpool, G., Gowers, C., Haas, J.: Plasma confinement in JET H mode plasmas with H, D, DT and T isotopes. Nucl. Fusion 39, 301 (1999)

    Article  ADS  Google Scholar 

  5. Hellinger, P.: Structure and stationarity of quasi-perpendicular shocks: numerical simulations. Planet. Space. Sci. 51(11), 649–657 (2003). doi:10.1016/S0032-0633(03)00100-4

    Article  ADS  Google Scholar 

  6. Zhong, J., Yutong, L., et al.: Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nat. Phys. 6, 984–987 (2010). doi:10.1038/nphys1790

    Article  Google Scholar 

  7. Baumjohann, W., Paschmann, G., Luehr, H.: Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. 95, 3801–3809 (1990). doi:10.1029/JA095iA04p03801

    Article  ADS  Google Scholar 

  8. Phan, T.D., Kistler, L.M., Klecker, B., Haerendel, G., Paschmann, G., Sonnerup, B.U.Ö., Baumjohann, W., Bavassano-Cattaneo, M.B., Carlson, C.W., DiLellis, A.M., Fornacon, K., Frank, L.A., Fujimoto, M., Georgescu, E., Kokubun, S., Moebius, E., Mukai, T., Øieroset, M., Paterson, W.R., Reme, H.: Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848–850 (2000)

    Article  ADS  Google Scholar 

  9. Innes, D.E., Inhester, B., Axford, W.I., Wilhelm, K.: Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811–813 (1997). doi:10.1038/386811a0

    Article  ADS  Google Scholar 

  10. Shibata, K., Nakamura, T., Matsumoto, T., Otsuji, K., Okamoto, T.J., Nishizuka, N., Kawate, T., Watanabe, H., Nagata, S., UeNo, S., Kitai, R., Nozawa, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Katsukawa, Y., Tarbell, T.D., Berger, T.E., Lites, B.W., Shine, R.A., Title, A.M.: Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591 (2007). doi:10.1126/science.1146708

    Article  ADS  Google Scholar 

  11. Ouyed, R., Pudritz, R.E., Stone, J.M.: Episodic jets from black holes and protostars. Nature 385, 409 (1997). doi:10.1038/385409a0

    Article  ADS  Google Scholar 

  12. Fermi-Lat Collaboration, Members of the 3C 279 Multi-Band Campaign, Abdo, A.A., Ackermann, M., Ajello, M., Axelsson, M., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., et al.: A change in the optical polarization associated with a γ -ray flare in the blazar 3C279. Nature 463, 919–923 (2010). doi:10.1038/nature08841

    Article  ADS  Google Scholar 

  13. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495 (1994). doi:10.1038/371495a0

    Article  ADS  Google Scholar 

  14. Angelopoulos, V., Baumjohann, W., Kennel, C.F., Coronti, F.V., Kivelson, M.G., Pellat, R., Walker, R.J., Luehr, H., Paschmann, G.: Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027–4039 (1992). doi:10.1029/91JA02701

    Article  ADS  Google Scholar 

  15. Lui, A.T.Y., Mankofsky, A., Chang, C.L., Papadopoulos, K., Wu, C.S.: A current disruption mechanism in the neutral sheet – a possible trigger for substorm expansions. Geophys. Res. Lett. 17, 745–748 (1990). doi:10.1029/GL017i006p00745

    Article  ADS  Google Scholar 

  16. Sergeev, V., Angelopoulos, V., Apatenkov, S., Bonnell, J., Ergun, R., Nakamura, R., McFadden, J., Larson, D., Runov, A.: Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, 21105 (2009). doi:10.1029/2009GL040658

    Article  ADS  Google Scholar 

  17. Runov, A., Angelopoulos, V., Sitnov, M.I., Sergeev, V.A., Nakamura, R., Nishimura, Y., Frey, H.U., McFadden, J.P., Larson, D., Bonnell, J., Glassmeier, K., Auster, U., Connors, M., Russell, C.T., Singer, H.J.: Dipolarization fronts in the magnetotail plasma sheet. Planet. Space Sci. 59, 517–525 (2011). doi:10.1016/j.pss.2010.06.006

    Google Scholar 

  18. Parker, E.N.: Magnetic neutral sheets in evolving fields - part two - formation of the solar corona. Astrophys. J. 264, 642 (1983). doi:10.1086/160637

    Article  ADS  Google Scholar 

  19. Phan, T.D., Gosling, J.T., Davis, M.S., Skoug, R.M., Øieroset, M., Lin, R.P., Lepping, R.P., McComas, D.J., Smith, C.W., Reme, H., Balogh, A.: A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175–178 (2006). doi:10.1038/nature04393

    Article  ADS  Google Scholar 

  20. Giacalone, J., Burgess, D.: Interaction between inclined current sheets and the heliospheric termination shock. Geophys. Res. Lett. 37, 19104 (2010). doi:10.1029/2010GL044656

    Article  ADS  Google Scholar 

  21. Retinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M., Owen, C.J.: In situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 3, 236–238 (2007). doi:10.1038/nphys574

    Article  Google Scholar 

  22. Runov, A., Baumjohann, W., Nakamura, R., Sergeev, V.A., Amm, O., Frey, H., Alexeev, I., Fazakerley, A.N., Owen, C.J., Lucek, E., André, M., Vaivads, A., Dandouras, I., Klecker, B.: Observations of an active thin current sheet. J. Geophys. Res. 113, 7 (2008). doi:10.1029/2007JA012685

    Google Scholar 

  23. Chen, L., Bessho, N., Lefebvre, B., Vaith, H., Asnes, A., Santolik, O., Fazakerley, A., Puhl-Quinn, P., Bhattacharjee, A., Khotyaintsev, Y., Daly, P., Torbert, R.: Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection. Phys. Plasma 16(5), 056501 (2009). doi:10.1063/1.3112744

    Article  ADS  Google Scholar 

  24. Vlahos, L., Krucker, S., Cargill, P.: The solar flare: a strongly turbulent particle accelerator. In: Lecture Notes in Physics, vol. 778, pp. 157 (2009). doi:10.1007/978-3-642-00210-6_5

  25. Gosling, J.T.: Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. 671, L73–L76 (2007). doi:10.1086/524842

    Article  ADS  Google Scholar 

  26. Ji, H., Ren, Y., Yamada, M., Dorfman, S., Daughton, W., Gerhardt, S.P.: New insights into dissipation in the electron layer during magnetic reconnection Geophys. Res. Lett. 35, 13106 (2008). doi:10.1029/2008GL034538

    Article  ADS  Google Scholar 

  27. Pritchett, P.L.: Energetic electron acceleration during multi-island coalescence. Phys. Plasma 15(10), 102105 (2008). doi:10.1063/1.2996321

    Article  ADS  Google Scholar 

  28. Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B., Bergen, B., Bowers, K.: Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. (2011). doi:10.1038/nphys1965

    Google Scholar 

  29. Shibata, K., Tanuma, S.: Plasmoid-induced-reconnection and fractal reconnection. Earth, Planets, and Space 53, 473–482 (2001)

    ADS  Google Scholar 

  30. Oka, M., Phan, T., Krucker, S., Fujimoto, M., Shinohara, I.: Electron acceleration by multiisland coalescence. Astrophys. J. 714, 915–926 (2010). doi:10.1088/0004-637X/714/1/915

    Article  ADS  Google Scholar 

  31. Nakamura, T.K.M., Hasegawa, H., Shinohara, I., Fujimoto, M.: Evolution of an MHD-scale Kelvin-Helmholtz vortex accompanied by magnetic reconnection: two-dimensional particle simulations. J. Geophys. Res. 116(A15), A03227 (2011). doi:10.1029/2010JA016046

  32. Drake, J.F., Swisdak, M., Che, H., Shay, M.A.: Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553–556 (2006). doi:10.1038/nature05116

    Article  ADS  Google Scholar 

  33. Eastwood, J.P., Sibeck, D.G., Slavin, J.A., Goldstein, M.L., Lavraud, B., Sitnov, M., Imber, S., Balogh, A., Lucek, E.A., Dandouras, I.: Observations of multiple X-line structure in the Earth’s magnetotail current sheet: a Cluster case study. Geophys. Res. Lett. 32, 11105 (2005). doi:10.1029/2005GL022509

    Article  ADS  Google Scholar 

  34. Chen, L.J., Bhattacharjee, A., Puhl-Quinn, P.A., Yang, H., Bessho, N., Imada, S., Mühlbachler, S, Daly, P.W., Lefebvre, B., Khotyaintsev, Y., Vaivads, A., Fazakerley, A., Georgescu, E.: Observation of energetic electrons within magnetic islands. Nat. Phys. 4, 19–23 (2008). doi:10.1038/nphys777.

    Article  Google Scholar 

  35. Retinò, A., Nakamura, R., Vaivads, A., Khotyaintsev, Y., Hayakawa, T., Tanaka, K., Kasahara, S., Fujimoto, M., Shinohara, I., Eastwood, J.P., André, M., Baumjohann, W., Daly, P.W., Kronberg, E.A., Cornilleau-Wehrlin, N.: Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the Earth’s magnetotail. J. Geophys. Res. 113, 12215 (2008). doi:10.1029/2008JA013511.

    Article  Google Scholar 

  36. Sreenivasan, K.: Turbulence and the tube. Nature 344, 192 (1990)

    Article  ADS  Google Scholar 

  37. Biskamp, D.: Magnetohydrodynamics Turbulence. Cambridge University Press, Cambridge, UK (2003)

    Book  Google Scholar 

  38. Lazarian, A., Beresnyak, A., Yan, H., Opher, M., Liu, Y.: Properties and selected implications of magnetic turbulence for interstellar medium, local bubble and solar wind. Space Sci. Rev. 143, 387–413 (2009). doi:10.1007/s11214-008-9452-y

    Article  ADS  Google Scholar 

  39. Bruno, R., Carbone, V.: The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2, 4 (2005)

    ADS  Google Scholar 

  40. Brandenburg, A., Nordlund, A.: Astrophysical turbulence modeling. Rep. Prog. Phys. 74(4), 046901 (2011). doi:10.1088/0034-4885/74/4/046901

    Google Scholar 

  41. Sorriso-Valvo, L., Yordanova, E., Carbone, V.: On the scaling properties of anisotropy of interplanetary magnetic turbulent fluctuations. Eur. Phys. Lett. 90, 59001 (2010). doi:10.1209/0295-5075/90/59001

    Article  ADS  Google Scholar 

  42. Goldreich, P., Sridhar, S.: Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763–775 (1995). doi:10.1086/175121

    Article  ADS  Google Scholar 

  43. Horbury, T.S., Forman, M., Oughton, S.: Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101(17), 175005 (2008). doi:10.1103/PhysRevLett.101.175005

    Article  ADS  Google Scholar 

  44. Bieber, J.W., Wanner, W., Matthaeus, W.H.: Dominant two-dimensional solar wind turbulence with implications for cosmic ray transpor. J. Geophys. Res. 101, 2511–2522 (1996). doi:10.1029/95JA02588

    Article  ADS  Google Scholar 

  45. Narita, Y., Glassmeier, K., Sahraoui, F., Goldstein, M.L.: Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys. Rev. Lett. 104(17), 171101 (2010). doi:10.1103/PhysRevLett.104.171101

    Article  ADS  Google Scholar 

  46. Mininni, P.D., Alexakis, A., Pouquet, A.: Energy transfer in Hall-MHD turbulence: cascades, backscatter, and dynamo action. J. Plasma Phys. 73, 377–401 (2007). doi:10.1017/S0022377806004624

    Article  ADS  Google Scholar 

  47. Chen, C.H.K., Horbury, T.S., Schekochihin, A.A., Wicks, R.T., Alexandrova, O., Mitchell, J.: Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104(25), 255002 (2010). doi:10.1103/PhysRevLett.104.255002

    Article  ADS  Google Scholar 

  48. Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105(13), 131101 (2010). doi:10.1103/PhysRevLett.105.131101

    Article  ADS  Google Scholar 

  49. Cho, J., Lazarian, A.: Simulations of electron magnetohydrodynamic turbulence. Astrophys. J. 701, 236–252 (2009). doi:10.1088/0004-637X/701/1/236

    Article  ADS  Google Scholar 

  50. Sonnerup, B.U.Ö., Haaland, S., Paschmann, G.: Discontinuity Orientation, Motion and Thickness. ISSI SR-005, pp. 1–10 (2008)

  51. Shi, Q.Q., Shen, C., Pu, Z.Y., Dunlop, M.W., Zong, Q., Zhang, H., Xiao, C.J., Liu, Z.X., Balogh, A.: Dimensional analysis of observed structures using multipoint magnetic field measurements: application to cluster. Geophys. Res. Lett. 32, 12105 (2005). doi:10.1029/2005GL022454

    Article  ADS  Google Scholar 

  52. Shi, Q.Q., Shen, C., Dunlop, M.W., Pu, Z.Y., Zong, Q., Liu, Z.X., Lucek, E., Balogh, A.: Motion of observed structures calculated from multi-point magnetic field measurements: application to cluster. Geophys. Res. Lett. 33, 8109 (2006). doi:10.1029/2005GL025073

    Article  Google Scholar 

  53. Harvey, C.C.: Spatial Gradients and the Volumetric Tensor. ISSI SR-001, p. 307 (1998)

  54. CSDS: Cluster science data system. http://sci2.estec.esa.nl/cluster/csds/csds.html

  55. AMDA: Automated multi-dataset analysis. cdpp-amda.cesr.fr/DDHTML/index.html

Download references

Acknowledgements

We acknowledge the support by the Swedish National Space Board that particularly allowed the Swedish Space Corporation to carry out feasibility study. We acknowledge the useful discussion and comments from A. Alexandrova (IWF, Austria), M. André (IRF, Sweden), G. Belmont (LPP, France), J. Birn (LANL, US), D. Burgess (QMUL, UK), J. P. Eastwood (ICL, UK), H. Hasegawa (ISAS/JAXA, Japan), S. Imada (ISAS/JAXA), A. Kis (GGKI, Hungary), L. Kistler (UNH, US), M. Oka (UCB, Berkeley), H. Opgenoorth (IRF, Sweden), G. Paschmann (MPE, Germany), V. Sergeev (Univ. StPB, Russia). We acknowledge the input from ISSI group “Dispersive cascade and dissipation in collisionless space plasma turbulence—observations and simulations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vaivads.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaivads, A., Andersson, G., Bale, S.D. et al. EIDOSCOPE: particle acceleration at plasma boundaries. Exp Astron 33, 491–527 (2012). https://doi.org/10.1007/s10686-011-9233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9233-6

Keywords

Navigation